上海诗幕自动化设备有限公司
西门子SM321模块6ES7321-1BH50-0AA0
  • 西门子SM321模块6ES7321-1BH50-0AA0
  • 西门子SM321模块6ES7321-1BH50-0AA0
  • 西门子SM321模块6ES7321-1BH50-0AA0

产品描述

是否进口 加工定制 产品认证CE 系列300 可售卖地全国 是否跨境货源 结构形式:模块 安装方式:现场安装 功能:PLC/CPU 加工定制:
TIM 4R-IE 具有 SIMATIC S7-300 设计的所有优点:
结构紧凑;
宽度仅有两个 SIMATIC S7-300 SM 标准模板宽
9 针 Sub-D 连接器,带有组合 RS232/RS485 接口,用于通过合适的调制解调器连接传统广域网。
2 个 RJ-45 插口,用于连接至工业以太网,或基于 IP 的网络;工业设计中带附加固定套环,用来插入 IE FC RJ45 Plug 180
2 针端子条,用于与外部 24V DC 电源连接。
前 LED,用于显示模块的状态和通讯状态
易于安装;
TIM 安装在 S7-300 安装导轨上;
如果作为通讯处理器集成到 S7-300 中,则它可通过随 TIM 提供的总线接头连接到邻近的模板。没有槽位规则。作为立设备,通过其中一个以太网端口连接到一个或多个 S7-400 CPU 或控制中心 PC。
可用在扩展机架 (ER)与 IM 360/361 中;
可不用风扇运行
后备电池和存储器模块(C-PLUG)可选择安装
功能
TIM 4R-IE 的基本功能在入门“TIM 通讯模块”中有说明。TIM 4R-IE 与其它类型的 TIM 不同的功能为:
TIM 4R-IE 可用作立设备,即使无 S7-300-CPU 也能完全发挥其功能。在这个立模式中,TIM 特别适合用作控制台 PC(SINAUT ST7cc 或 ST7sc)或 SIMATIC S7-400 的 SINAUT 通讯处理器。通过 TIM 的两个以太网接口之一可将其连接到 PC 或 S7-400。如控制台冗余设计或 S7-400 可用作上位控制器,TIM 即进行 SINAUT 与连接到本地以太网的设备站点之间的通讯
TIM 4R-IE 也可内置于 SIMATIC S7-300 系统中,用作通讯处理器,如果这些设备要求有冗余的传输途径或用作节点站,这种条件下必须将两个以上的网络归并
在 TIM 4R-IE 的帮助下,所有提到的设备均可与其它 SINAUT ST7 或 ST1 通讯方数据交换,在任何冗余结合下,可操作多达 4 个 SINAUT 网络
重要的 SINAUT 属性 – 在链接中断或相关设备故障时,将带有时间戳的数据保存在 TIM 上 – 不仅可以用于传统的广域网 (WAN),而且还可以用于基于 IP 的网络。这样,重要的事件、报警等信息都不会丢失,确保控制中心系统中的信息完整性。TIM 4R-IE 的可选后备电池提供了附加的安全功能,当 24 V 供电故障时,可防止所存数据报文帧的丢失
可使用几个 TIM 4R-IE 模块来构建复杂控制的中心或节点站点。也可将其与 TIM 3V-IE 型、TIM 3 及其它 TIM 4 类型结合使用
作为控制台 PC 的通讯模块,TIM 把连接 S7 的数目减少到一个(1),否则 PC 通过 IP 网络直接连接站点时须保持所有连接。另外,TIM 可把本地以太网和 IP 网络的站点分离开来。只允许 SINAUT 和 PG 与站点通讯。这避免了广域网中非广播时不必要的数据堵塞
在冗余控制台中使用的 TIM 4R-IE 减少广域网 (WAN) 中的数据量,因此减少数据量通讯网络(例如,GPRS)的成本。如果站直接连接到冗余控制中心(不带中心 TIM 4R-IE),为了将数据发送到两个控制台 PC,它们将每个消息帧发送两次。在使用控制台 TIM 4R-IE 时,这些站只将它们的消息帧发送一次。控制中心 TIM 4R-IE 将进行报文帧的加倍,以补充两个 PC 中的报文帧
传统广域网数据传输时,TIM 4R-IE 具有预设控制中心 TIM 的功能
因此 SINAUT ST7 和 TIM 4R-IE 是专为大范围广域网或组合广域网的数据传输设计的。混合网络包括传统 SINAUT WAN 网络(专线,无线,拨号网络)和基于IP的网络(光纤网,DSL,GPRS,因特网等),均可使用 SINAUT 统一组态,节约了时间和花费
对于通过因特网的通信,可以使用用于直接访问 DSL 路由器的集成 MSC- 隧道协议。TIM4R-IE 在此处可以作为 MSC 服务器或 MSC 客户端操作。对于通过 GPRS 的通信,可以将路由器 MD741-1 连接到 IE 接口 ( IPsec) 或将 GSM/GPRS 调制解调器 MD720-3 (MSC-) 连接到 RS232 接口
S7-300F中,是否可以在机架上把错误校验和标准模块结合在一起使用?
在S7-300F的机架上,可以混合使用防错和非防错(标准)数字E/A模块。为此,就像在ET200M中一样,需要一个隔离模块(MLFB: 6ES7195-7KF00-0XA0),用来在和扩展机架中隔离防错模块和标准模块
开关量模板
6ES7321-1BH02-0AA0开入模块(16点,24VDC)
6ES7321-1BH10-0AA0开入模块(16点,24VDC)
6ES7321-1BH50-0AA0开入模块(16点,24VDC,源输入)
6ES7321-1BL00-0AA0开入模块(32点,24VDC)
6ES7321-7BH01-0AB0开入模块(16点,24VDC,诊断能力)
6ES7321-1EL00-0AA0开入模块(32点,120VAC)
6ES7321-1FF01-0AA0开入模块(8点,120/230VAC)
6ES7321-1FF10-0AA0开入模块(8点,120/230VAC)与公共电位单连接
6ES7321-1FH00-0AA0开入模块(16点,120/230VAC)
6ES7321-1CH00-0AA0开入模块(16点,24/48VDC)
6ES7321-1CH20-0AA0开入模块(16点,48/125VDC)
6ES7322-1BH01-0AA0开出模块(16点,24VDC)
6ES7322-1BH10-0AA0开出模块(16点,24VDC)高速
6ES7322-1CF00-0AA0开出模块(8点,48-125VDC)
6ES7322-8BF00-0AB0开出模块(8点,24VDC)诊断能力
6ES7322-5GH00-0AB0开出模块(16点,24VDC,立接点,故障保护)
6ES7322-1BL00-0AA0开出模块(32点,24VDC)
6ES7322-1FL00-0AA0开出模块(32点,120VAC/230VAC)
6ES7322-1BF01-0AA0开出模块(8点,24VDC,2A)
6ES7322-1FF01-0AA0开出模块(8点,120V/230VAC)
6ES7322-5FF00-0AB0开出模块(8点,120V/230VAC,立接点)
6ES7322-1HF01-0AA0开出模块(8点,继电器,2A)
6ES7322-1HF10-0AA0开出模块(8点,继电器,*,立接点)
6ES7322-1HH01-0AA0开出模块(16点,继电器)
6ES7322-5HF00-0AB0开出模块(8点,继电器,*,故障保护)
6ES7322-1FH00-0AA0开出模块(16点,120V/230VAC)
6ES7323-1BH01-0AA08点输入,24VDC;8点输出,24VDC模块
6ES7323-1BL00-0AA016点输入,24VDC;16点输出,24VDC模块
模拟量模板
6ES7331-7KF02-0AB0模拟量输入模块(8路,多种信号)
6ES7331-7KB02-0AB0模拟量输入模块(2路,多种信号)
6ES7331-7NF00-0AB0模拟量输入模块(8路,15位精度)
6ES7331-7NF10-0AB0模拟量输入模块(8路,15位精度)4通道模式
6ES7331-7HF01-0AB0模拟量输入模块(8路,14位精度,快速)
6ES7331-1KF01-0AB0模拟量输入模块(8路, 13位精度)
6ES7331-7PF01-0AB08路模拟量输入,16位,热电阻
6ES7331-7PF11-0AB08路模拟量输入,16位,热电偶
6ES7332-5HD01-0AB0模拟输出模块(4路)
6ES7332-5HB01-0AB0模拟输出模块(2路)
6ES7332-5HF00-0AB0模拟输出模块(8路)
6ES7332-7ND02-0AB0模拟量输出模块(4路,15位精度)
6ES7334-0KE00-0AB0模拟量输入(4路RTD)/模拟量输出(2路)
6ES7334-0CE01-0AA0模拟量输入(4路)/模拟量输出(2路)
西门子SM321模块6ES7321-1BH50-0AA0
下列技术型CPU 可以提供:
CPU 315T-2 DP,用于使用 PROFIBUS DP进行分布式组态、对程序量有中/高要求、同时需要对8个轴进行常规运动
控制的工厂。
CPU 317T-2 DP,用于使用 PROFIBUS DP进行分布式组态、对程序量有高要求、又必须同时能够处理运动控制任务
的工厂
下列故障安全型CPU 可以提供:
CPU 315F-2 DP,用于采用 PROFIBUS DP 进行分布式组态、对程序量有中/高要求的故障安全型工厂
CPU 315F-2 PN/DP,用于具有中/大规模的程序量以及使用PROFIBUS DP和PROFINET IO进行分布式组态的工厂,在
PROFInet上实现基于组件的自动化中实现分布式智能系统
CPU 317F-2 DP,用于具有大容量程序量以及使用PROFIBUS DP进行分布式组态的故障安全工厂
CPU 317F-2 PN/DP,用于具有大容量程序量以及使用PROFIBUS DP和PROFINET IO进行分布式组态的工厂,在
PROFInet上实现基于组件的自动化中实现分布式智能系统
CPU 319F-3 PN/DP,用于具有大容量程序量以及使用PROFIBUS DP和PROFINET IO进行分布式组态的故障安全型工
厂,在PROFInet上实现基于组件的自动化中实现分布式智能系统
Overview
具有中、大容量的程序存储器和数据结构,如果需要,可以供 SIMATIC 组态工具使用
对二进制和浮点数运算具有较高的处理能力
在具有集中式和分布式I/O的生产线上作为集中式控制器使用
PROFIBUS DP 主站/从站接口
用于大量的 I/O 扩展
用于建立分布式 I/O 结构
在PROFIBUS上实现等时同步模式
CPU 运行需要 SIMATIC 微存储卡(MMC)
Area of application
CPU 315-2 DP 是一个带有大中型程序存储器和 PROFIBUS DP 主/从接口的 CPU。除了集中式 I/O 结构外,它还
可用于分布式自动化结构。
它在 SIMATIC S7-300 中经常被用作标准 PROFIBUS DP 主站。 该 CPU 也被用作分布式智能设备(DP从站)。
它已经依照量化框架作了优化,以便使用 SIMATIC 工程工具,如:
用SCL编程
用S7-GRAPH进行顺序控制编程
另外,CPU 为采用软件来实现一些简单的工艺任务提供了一个理想的平台,例如:
简单的运动控制
使用 STEP 7 块或运行软件“标准/模块化PID控制” 来实现闭环控制任务的解决方案
通过使用 SIMATIC S7-PDIAG 可以实现扩展过程诊断。
Design
CPU 315-2 DP 安装有:
微处理器;
处理器对每条二进制指令的处理时间大约为 50 ns,每个浮点预算的时间为 0.45 μs。
256 KB 工作存储器(相当于大约 85 K 条指令);
与执行程序段相关的大容量工作存储器可以为用户程序提供足够的空间。作为程序装载存储器的微型存储卡(***
大为 8 MB)也允许将可以项目(包括符号和注释)保存在 CPU 中。装载存储器还可用于数据归档和配方管理。
灵活的扩展能力;
多达 32 个模块,(4排结构)
MPI多点接口;
集成的 MPI 接口***多可以同时建立与 S7-300/400 或编程设备、PC、OP 的 16 条连接。在这些连接中,始终为
编程器和 OP 分别预留一个连接。通过“全局数据通讯”,MPI可以用来建立***多16个CPU组成的简单网络。
PROFIBUS DP 接口:
带有 PROFIBUS DP 主/从接口的 CPU 315-2 DP 可以用来建立高速、易用的分布式自动化系统。对用户来说,分布
式I/O单元可作为一个集中式单元来处理(相同的组态、编址和编程).
全面支持 PROFIBUS DP V1 标准。它提高了 DP V1 标准从站的诊断和参数化能力。
西门子SM321模块6ES7321-1BH50-0AA0
RUN-P(运行-编程)位置:运行时还可以读出和修改用户程序,改变运行方式。
(2)RUN (运行)位置:CPU执行、读出用户程序,但是不能修改用户程序。
(3)STOP(停止)位置:不执行用户程序,可以读出和修改用户程序。
(4)MRES(清除存储器):不能保持。将钥匙开关从STOP状态搬到MRES位置,可复位存储器,使CPU回到初始状态。
S7-300 具有不同的通信接口:
连接 AS-Interface、PROFIBUS 和 PROFINET/工业以太网总线系统的通信处理器。
用于点到点连接的通信处理器
多点接口 (MPI), 集成在 CPU 中;
是一种经济有效的方案,可以同时连接编程器/PC、人机界面系统和其它的 SIMATIC S7/C7 自动化系统。
PROFIBUS DP进行过程通信
SIMATIC S7-300 通过通信处理器或通过配备集成 PROFIBUS DP 接口的 CPU 连接到 PROFIBUS DP 总线系统。通过带有 PROFIBUS DP 主站/从站接口的 CPU,可构建一个高速的分布式自动化系统,并且使得操作大大简化。
从用户的角度来看,PROFIBUS DP 上的分布式I/O处理与集中式I/O处理没有区别(相同的组态,编址及编程)。
在用户程序执行阶段,PLC总是按由上而下的顺序依次地扫描用户程序(梯形图)。在扫描每一条梯形图时,又总是先扫描梯形图左边的由各触点构成的控制线路,并按先左后右、先上后下的顺序对由触点构成的控制线路进行逻辑运算,然后根据逻辑运算的结果,刷新该逻辑线圈在系统RAM存储区中对应位的状态;或者刷新该输出线圈在I/O映象区中对应位的状态;或者确定是否要执行该梯形图所规定的功能指令。
即,在用户程序执行过程中,只有输入点在I/O映象区内的状态和数据不会发生变化,而其他输出点和软设备在I/O映象区或系统RAM存储区内的状态和数据都有可能发生变化,而且排在上面的梯形图,其程序执行结果会对排在下面的凡是用到这些线圈或数据的梯形图起作用;相反,排在下面的梯形图,其被刷新的逻辑线圈的状态或数据只能到下一个扫描周期才能对排在其上面的程序起作用。
无论是输入还是输出装置,当传感器有信号或执行机构的驱动装置得电后,必须同时检查PLC上的I/O模块指示灯是否也点亮。很多设备中,输入输出信号是通过接线端子与PLC连接,有时接线端子的指示灯有信号,但PLC上相应的地址没有信号,这可能是由于连接导线内部断路造成的,在设备排故时很容易忽略,这一点要特别注意。 在测量输入输出信号后,要及时将测量的地址记录下来,保证信号地址和说明书中一致。如有不同,再次进行测量核实,多次测量仍然不一致,可以联系设备厂家进行咨询,保证编程时对各输入输出点做到充分确认。第三步:打开编程软件,进行硬件配置,并将I/O地址写在符号表中虽然不同PLC使用的编程软件不同,但编程步骤大致一样
一、输入输出(I/O)点数的估算
I/O点数估算时应考虑适当的余量,通常根据统计的输入输出点数,再10%~20%的可扩展
余量后,作为输入输出点数估算数据。实际订货时,还需根据制造厂商PLC的产品特点,对输入输出点数进行圆整。
二、存储器容量的估算
存储器容量是可编程序控制器本身能提供的硬件存储单元大小,程序容量是存储器中用户应用项目使用的存储单元的大小,因此程序容量小于存储器容量。设计阶段,由于用户应用程序还未编制,因此,程序容量在设计阶段是未知的,需在程序调试之后才知道。为了设计选型时能对程序容量有一定估算,通常采用存储器容量的估算来替代。
存储器内存容量的估算没有固定的公式,许多文献资料中给出了不同公式,大体上都是按数字量I/O点数的10~15倍,加上模拟I/O点数的100倍,以此数为内存的总字数(16位为一个字),另外再按此数的25%考虑余量。
整个系统掉电后,为什么CPU在电源恢复后仍保持在停止状态?
整个系统由一个DP主站S7-300/400以及从站组成。而从站通过一个主开关被切断了电源。由于内部的CPU电压缓冲器,CPU 仍继续运行大约50ms到100ms。此阶段里 CPU 识别出所连接的从站的故障。如果没有编程OB86和OB122的话,CPU 就会因为这些有故障的从站而继续保留在停止状态。
在点到点通信中,协议 3964(R)和RK 512 之间的区别是什么?
这两个协议的主要区别在于消息报头和响应消息的不同。使用RK 512,提供有的数据完整性,程序 3964(R) 当传送信息数据时,程序 3964(R)将控制字符(安全层)添加到信息数据上。这些控制字符激活通信伙伴,检查数据是否全部接收,是否无错误。
西门子SM321模块6ES7321-1BH50-0AA0
SIMATIC PCS 7/APACS+ OS可无缝集成现有控制器,可以替换旧系统,实现连接 SIMATIC IT 的连接方式,通过 World Wide Web 或者通过与其它 IT 应用交换 OPC 数据支持工厂运行。我们的 DBA 工具使您可以快速可靠的连接新的操作系统。根据要求,我们提供了现有过程图的转换服务。
在您通过安装 SIMATIC PCS 7 扩展自己的系统时,可以通过 SIMATIC PCS 7/OS 可以理所当然的实现公共的操作员控制和监视以及控制器之间的通讯。
为了把现有的输入/输出模块集成到新的 SIMATIC PCS 7 构架里,我们开发了 DP/IO Link。这种连接可以实现新的 SIMATIC 控制器与 APACS+ I/O 模块之间的通讯。采用这种方式还可以保护在现场布线和 I/O 模块上的投资。
越来越多的客户正在选择从 APACS+ 直接迁移到 SIMATIC PCS 7,信任行之有效的 SIMATIC 系统组件。从而从现代化的过程控制系统以及从 TIA 带来的协同效应上获益,并同时保留了可以继续使用 APACS+ I/O 装置的选择
SIMOTION C240 PN 可用于基于 PROFINET 的机器自动化项目。这种控制器具有三个 PROFINET 端口,除支持 TCP/IP 和 RT 通信外,还支持具有 IRT 功能的 PROFINET。它能够操作采用 PROFIdrive 行规的 PROFINET 驱动器以及 PROFINET I/O(如高速 SIMATIC ET 200SP)。
两种型号都另外配备两个 PROFIBUS 接口,通过这两个接口可以连接支持 PROFIdrive 行规和标准 I/O 的驱动。除此以外,两个控制器还具有工业以太网接口,从而提供更多的通信选项。
SIMOTION P – 对其他任务开放
SIMOTION P 是一款基于 PC 的运动控制系统,具有两种型号:
由于 PC 中不含旋转部件,SIMOTION P320-4 系统适用于恶劣环境中的应用。两个 PC 都配有针对 SIMOTION 的常见实时扩展系统。这就意味着,除了 SIMOTION 机器应用程序以外,还可能随时运行其他 PC 应用程序,例如 SIMOTION 工程系统、操作员应用程序、过程数据评估例程或标准的 PC 应用程序。
SIMOTION P350-4 特别适合对性能要求较高的应用(如具有高动态配置和压力控制回路的液压应用)。
SIMOTION P320-4 特别适合恶劣的操作环境。由于其尺寸小,因此对于许多可用空间有限并且需要设计非常坚固的应用均是选择。
SIMOTION P320-4 可通过各种不同的 SIMOTION 工业平板显示器来操作 (IFP)。提供了不同的屏幕大小,既可以使用键盘和鼠标,也可以使用触摸屏进行操作。
这两个型号都标配有一个现场总线接口,其形式为集成式 PROFINET 接口(3 个端口)。IsoPROFIBUS board 板可安装在扩展插槽内以实现 PROFIBUS 应用。IsoPROFIBUS 板具有两个附加 PROFIBUS 接口。
重点放在用户友好性上
随着系统性能的提高,对系统的用户友好性的要求也相应提高。这是确保系统可用性的方法。对于用于 SIMOTION 的工程组态系统 SCOUT,重点尤其被放在了用户友好性上面:
运动控制、PLC 和技术功能的组态以及驱动器的组态与调试都是在相同的组态环境中以相同的方式进行的。
所有任务都基本上以图形方式来完成:组态、编程、测试和调试
直观的操作、内容相关帮助功能以及自动*性检查使工程组态更加容易,尤其是对于新接触运动控制编程的人更是如此
与 SCOUT 工程组态系统相关的所有工具被集成在一起,具有统一的外观
SCOUT 工程组态系统可帮助用户轻松、的逐步完成组态工作
SCOUT 可在 SIMATIC STEP 7 中使用(具有标准化的数据管理和组态程序),或作为一个立工程组态工具使用 (SCOUT Stand-Alone)
SCOUT TIA(TIA Portal 中的 SIMOTION)以 TIA Portal V13(或更高版本)的选件包供货。该选件包包括在 SCOUT 的供货范围中
可以选择以下选项以使用 SCOUT 工程组态系统来编程 SIMOTION:
使用运动控制图 (MCC) 的图形化编程
使用驱动控制图 (DCC) 进行图形化编程(不适用于 SCOUT TIA)
经常用作 PLC 编程语言的梯形图逻辑 (LAD)/函数块图 (FBD)
语言结构化文本 (ST),包括面向对象的编程
除运动控制命令(例如,轴的参考)外,还提供了用于 I/O 访问、逻辑和计算、子程序调用以及程序流控制的命令
系统存储器用于存放输入输出过程映像区(PII,PIQ)、位存储器(M)、定时器(T)和计数器(C))、块堆栈和中断堆栈以及临时存储器(本地数据堆栈)。
工作存储器:
工作存储器仅包含运行时使用的程序和数据。RAM 工作存储器集成在CPU中, RAM中的内容通过电源模块供电或后备电池保持。除了S7 417-4 CPU可以通过插入的存储卡来扩展工作存储器外,其他PLC的工作存储器都无法扩展。
3.    装载存储器:
装载存储器是用于存放不包含符号地址分配或注释(这些保留在编程设备的存储器中)的用户程序。装载存储器可以是存储器卡、内部集成的RAM或内部集成的EPROM.
4.    保持存储器:
保持存储器是非易失性的RAM,通过组态可以在PLC掉电后即使没有安装后备电池的情况下,保存一部分位存储器(M)、定时器(T)、计数器(C)和数据块(DB)。在设置CPU参数时一定要要保持的区域。(注意:由于S7-400 PLC没有非易失性RAM,即使组态了保持区域,再掉电时若没有后备电池,也将丢失所有数据。这是S7-300 PLC 与S7-400 PLC 的重要区别)
1)     当在step7 中执行下装(download)时,会把编程设备中的用户程序下装到CPU的装载存储区,同时会把运行时使用的程序和数据写入工作存储区(如OB1和数据块)。
2)     若CPU没有后备电池,当系统断电时,在工作存储器中定义了保持特性的数据块会把数据写入保持存储器中,上电后保持存储器会把断电时的数据写入到工作存储区, 保证了运行数据断电不丢失(过程如图7-1中与箭头所示)。
3)    若CPU没有后备电池,当系统断电时,系统存储区中定义n的保持位存储器(M)、定时器(T)和计数器(C))断电时也会写入保持存储器,恢复上电时断电时的数据重新写入,保证了运行数据断电不丢失(如图7-1中与箭头所示)。
按照CPU 的装载存储器来分类:新型S7-300 CPU、标准型S7-300 CPU、带内置EPROM 的S7300 CPU,具体描述如下:
新型S7-300 CPU是指使用MMC卡作为其装载存储器的CPU,此类CPU不用安装后备电池,免维护。由于新型S7300-CPU它不含内置的装载存储器,因此必须使用MMC卡。新型的S7-300 CPU包括紧凑型 (即CPU31xC系列)和由标准型更新的新型CPU。任何程序的下载方式都直接保存到卡中, 没有MMC卡,是无法把程序下载到CPU中的。
MMC卡需要用户根据程序大小单订货,选型时建议大于CPU工作内存,CPU313,CPU314,CPU315-2DP,CPU317-2DP 系列CPU的可插拔MMC卡大支持8 MB ,其他高支持4 MB
用于新型S7-300 CPU的MMC 卡(Micro Memory Card )型号如下:
64 KB   6ES7 953-8LF11-0AA0
128 KB  6ES7 953-8LG11-0AA0
512 KB  6ES7 953-8LJ11-0AA0
2 MB    6ES7 953-8LL11-0AA0
4 MB    6ES7 953-8LM11-0AA0
8 MB    6ES7 953-8LP11-0AA0
15:如何在已配置为DP从站的两个CPU模块间组态直接数据交换(节点间通信)?
两个CPU站配置为DP从站,而且由同一个DP主站操作,它们之间的通信通过配置交换模式为DX可以完成直接数据交换。
16:如何使用SFC65,SFC66,SFC67 和 SFC68 进行通信?
对于单向基本通信,使用系统功能 SFC67 (X_GET)从一个被动站读取数据,使用系统功能SFC68(X_PUT)将数据写入一个被动站(服务器)。这些块只有在主动站中才调用。对于一个双向基本通信,调用站中的系统功能SFC65 (X_SEND),在该站中想将数据发送到另一个主动站。在同样为主动的主动接收站中,数据将通过系统功能SFC66 (X_RCV)记录。
两种类型的基本通信中,每次块调用可以处理多 76 字节的用户数据。对于S7-300 CPU,数据传送的数据一致性是 8 个字节,对于S7-400 CPU则是全长。 如果连接到S7-200,必须考虑到S7-200只能用作一个被动站。
17:什么是自由分配 I/O 地址?
地址的自由分配意味着您可对每种模块(SM/FM/CP)自由的分配一个地址。地址分配在 STEP 7 里进行。先定义起始地址,该模块的其它地址以它为基准。
自由分配地址的优点:因为模块之间没有地址间隙,就可以优化地使用可用地址空间。在创建标准软件时,分配地址过程中可以不考虑所涉及的 S7-300 的组态。
http://www.absygs.com

产品推荐