上海诗幕自动化设备有限公司
西门子开出模块6ES7322-1HF01-9AJ0 售后无忧
  • 西门子开出模块6ES7322-1HF01-9AJ0 售后无忧
  • 西门子开出模块6ES7322-1HF01-9AJ0 售后无忧
  • 西门子开出模块6ES7322-1HF01-9AJ0 售后无忧

产品描述

是否进口 加工定制 产品认证CE 系列300 可售卖地全国 是否跨境货源 结构形式:模块 安装方式:现场安装 功能:PLC/CPU 加工定制:
SIMATIC S7-300 通过通讯处理器或通过配备集成 PROFINET 接口的 CPU 连接到 PROFINET IO 总线系统。配备 PROFINET 接口的 CPU 可实现高速、易于使用的分布式自动化组态。
“全局数据通讯”服务可以在联网的CPU间周期性地进行数据交换。 一个 S7-300 CPU 多和 4 个数据包交换数据,每个数据包含有 22 字节数据,可同时有 16 个 CPU 参与数据交换(使用 STEP 7 V4.x)。
使用“全局数据通讯”服务,网络连接的 CPU 可以循环交换数据(每个循环多交换 4 个全局数据包,每个数据包有 22 个字节)。例如,这允许一个 CPU 访问另一个 CPU 的数据、位存储器或过程映像。只可通过 MPI 进行全局数据通讯。使用 STEP 7 中的 GD 表进行组态。
可靠的组件用于建立 MPI 通讯: PROFIBUS 和“分布式 I/O”系列的总线电缆、总线连接器和 RS 485 中继器。它们可以优化配备安装达到特定要求。例如,如果需要可连接多串联 10 个中继器,以实现任何两个 MPI 节点之间的大距离。
方便的人机界面 (HMI) 服务已经集成在 S7-300 的操作系统中。这些功能不再需要耗时的编程:SIMATIC HMI 系统需要来自 SIMATIC S7-300 的过程数据 - S7-300 按照请求的刷新间隔传输过程数据。SIMATIC S7-300 的操作系统自动传输数据。整个系统使用统一的符号和数据库。
点到点连接是用来建立经济有效的数据通讯方式,通过 CP 340/CP 341 通讯处理器或集成在CPU 313C-2 PtP 或 CPU 314C-2 PtP的内置接口进行数据通讯
使用 S7-300,将有一个合适的通讯处理器 (CP 342-2),可用于 AS-Interface 总线,以连接现场设备(AS-Interface 从站)。
更多信息,请参见通讯处理器说明.
CPU 的智能诊断系统连续控制系统功能并记录故障和特定系统事件(例如,定时误差、模块故障等)。这些事件标记有时间戳并被保存在环形缓冲区,以用于稍后的故障排除。
MPI(多点接口)是集成在 SIMATIC S7-300 CPU 上的通讯接口。它能用于简单的网络任务。
CPU指令集和相应的执行时间列表。 可执行块(OB、SFC、SFB)及其执行时间的列表。
控制系统中干扰及其来源
现场电磁干扰是PLC控制系统中较常见也是易影响系统可靠性的因素之一,所谓治标先治本,找出问题所在,才能提出解决问题的办法。因此必须知道现场干扰的源头。
(1)干扰源及一般分类
影响PLC控制系统的干扰源,大都产生在电流或电压剧烈变化的部位,其原因是电流改变产生磁场,对设备产生电磁辐射;磁场改变产生电流,电磁高速产生电磁波。通常电磁干扰按干扰模式不同,分为共模干扰和差模干扰。共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压叠加所形成。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的主要原因),这种共模干扰可为直流,亦可为交流。差模干扰是指作用于信号两间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种干扰叠加在信号上,直接影响测量与控制精度。
(2)PLC系统中干扰的主要来源及途径
a.强电干扰
PLC系统的正常供电电源均由电网供电。由于电网覆盖范围广,它将受到所有空间电磁干扰而在线路上感应电压。尤其是电网内部的变化,刀开关操作浪涌、大型电力设备起停、交直流传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边。
b.柜内干扰
控制柜内的高压电器,大的电感性负载,混乱的布线都容易对PLC造成一定程度的干扰。
c.来自信号线引入的干扰
与PLC控制系统连接的各类信号传输线,除了传输有效的各类信息之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器供电电源或共用信号仪表的供电电源串入的电网干扰,这往往被忽视;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。由信号引入干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。
d.来自接地系统混乱时的干扰
接地是提高电子设备电磁兼容性(EMC)的有效手段之一。正确的接地,既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地,反而会引入严重的干扰信号,使PLC系统将无常工作。
功能强大的处理器:
该 CPU 的单条二进制命令的命令执行时间可低至 1 ns。
大容量工作存储器:
4 MB,用于程序;20 MB,用于数据
采用 SIMATIC 存储卡作为加装存储器;
允许实现例如数据日志和归档等其它功能
灵活的扩展功能:
单层组态多可支持 32 个模块(CPU + 31 个模块)
显示器的功能为:
显示概览信息,例如,集成接口的 IP 地址、站名称、别名称、位置名称等。
显示器以及诊断确认和用户消息
模块信息显示
显示设置
显示可由用户定义的徽标
IP 地址设置
日期和时间设置
选择操作模式
复位 CPU 至出厂设置
定时器号和分辨率
定时器对时间间隔计数。定时器的分辨率(时基)决定了每个时间间隔的长短。
S7-300 提供了256个可供使用的定时器,即用户可用的定时器号为T0-T255。TON、TONR 和 TOF 定时
器提供三种分辨率:1ms、10ms和100ms。(当前值的每个单位均为时基的倍数。例如,使用 10 ms 定时器
时,计数 50 表示经过的时间为 500 ms )。
定时器号的分辨率(时基)及大计数时间,如下表:
表1. 定时器号和分辨率
定时器号决定了定时器的分辨率(时基) , 并且分辨率在指令块上标出。
注意:同一个定时器编号不能同时用于 TON 和 TOF 定时器。 例如,不能同时使用 TON T32和 TOF
T32。
不同分辨率的定时器按以下规律刷新:
l 1ms:1ms分辨率的定时器,定时器位和当前值的更新不与扫描周期同步。对于大于1ms的程序扫描周
期,在一个扫描周期内,定时器位和当前值刷新多次。
l 10ms:10ms分辨率的定时器,定时器位和当前值在每个程序扫描周期的开始刷新。定时器位和当前值
在整个扫描周期过程中为常数。在每个扫描周期的开始会将一个扫描累计的时间间隔加到定时器的当
前值上。
l 100ms:100ms分辨率的定时器,定时器位和当前值在指令执行时刷新。因此为了保证正确的定时值,
要确保在一个程序扫描周期中,只执行一次100ms定时器指令。
注意:要确保小时间间隔,请将预设值 (PV)  1。例如:使用 100 ms 定时器时,为确保小时
间间隔至少为 2100 ms,则将 PV 设置为22。
TON 和 TONR 定时器操作:
l 在使能输入 IN 接通时开始计时。 当前值等于或大于预设时间时,定时器位置为接通。
l 使能输入置为断开时,清除 TON 定时器的当前值。
l 使能输入置为断开时,保持 TONR 定时器的当前值。 输入 IN 置为接通时,可以使用TONR 定时器累
积时间。 使用复位指令 (R) 可清除 TONR 的当前值。
l 达到预设时间后,TON 和 TONR 定时器继续定时,直到达到大值 32,767 时才停止定时。
TOF 定时器
l 使能输入接通时,定时器位立即接通,当前值置为 0。输入断开时,定时开始,定时一直持续到当前
时间等于预设时间。
l 达到预设值时,定时器位断开,当前值停止递增;但是,如果在 TOF 达到预设值之前使能输入再次
接通,则定时器位保持接通。
l 要使 TOF 定时器开始定时断开延时时间间隔,使能输入必须进行接通-断开转换。
192 KB 高速工作存储器(相当于约 64 K 指令),用于程序段执行,可以为用户程序提供足够的存储器空间
SIMATIC 微型存储卡(大 8 MB)作为程序的装载存储器,还允许将项目(包括符号和注释)存储在 CPU 中。
灵活的扩展能力;
多达 31 个模块,(4排结构)
MPI多点接口
内置 MPI 接口可以多同时建立 12 个与 S7-300/400 或与 PG、PC、OP 的连接。在这些连接中,始终分别为 PG 和 OP 各保留一个连接。通过“全局数据通讯”,MPI可以用来建立多16个CPU组成的简单网络。
PROFIBUS DP 接口:
带有 PROFIBUS DP 主/从接口的 CPU 314C-2 DP 可以用来建立高速、易用的分布式自动化系统。 对用户来说,分布式I/O单元可作为一个集中式单元来处理(相同的组态、编址和编程).
内置输入/输出;
在 CPU 314C-2 DP 中,提供有 24 路数字量输入(所有输入都可用作报警处理),16 路数字量输出以及 4路模拟量输入和 2 路模拟量输出(用于电流/电压信号),以及 1 路附加输入(用于测量温度 (Pt100)),使其可以成为上位控制系统
西门子开出模块6ES7322-1HF01-9AJ0
模块可以连接到CPU的右侧,进一步扩展数字或模拟输入/输出能力。CPU 1212C接受两个,CPU1214C接受八个信号模块.大量不同的数字量和模拟量模块可提供每种任务所需的输入/输出。数字量和模拟量模块在通道数目、电压和电流范围、隔离、诊断和报警功能等方面有所不同。 对于在此列举的所有模块系列,SIPLUS 部件也可应用在扩展温度范围 -25 - +60℃ 以及腐蚀性环境/冷凝环境中。S7-1200 信号板SIMATIC S7-1200集成通讯支持新用户和人员通过增加一个信号板,可以在控制器上增加数字或模拟I/O来满足您的需求。西门子同年在建立了13个公司
交易完成后博西家电将成为博世集团的全资子公司以PROFINET为枢纽,基于企业生产管理平台的核心控制,数据的处理能力将得到尽情释放,设备供应商完全可以对橡胶制造工厂进行远程和预警;基于大数据、根据数据波动,设备具备自诊断功能,总是在将坏未坏之时发现问题,将其上报给服务方,工程技术人员可在远程完成维修;设备在生产过程中,能够进行生产的自纠正,通过自适应算法进行调整,提高生产的稳定性。借助统一的PROFINET介质,不仅可以帮助客户提高生产水平,而且可以完成企业的精益化管理。与此同时,软控股份也在筹划建设自己的数据中心。未来,通过PROFINET串联,企业的生产管理平台将实现统一的电子数据管理和信息集成,并与PLM、MES、ERP等系统对接,实现全制造环节的互联互通,在生产与企业管理层面全面实现数字化。畅享数据,展望智能化远景。西门子与软控就是这样通过PROFINET一“线”相连,共同构建无限可能。中国制造2025刚刚踏上征程,面对智能制造激动人心的未来,软控股份深耕市场,以理性的实践紧扼信息化奔腾统筹合理的安排才能使品牌形象逐步起来
应用FM 352-5 高速布尔处理器可以进行快速的二进制控制以及提供快速的切换处理。该模块已应用在许多领域,包括:包装机械印刷和造纸机械食品和包装机械制药机械印刷和打孔可控制的子过程,包括: 小安装部件的高速跟踪保证“在线”质量(排除故障部件)工件和机床安全的功能安全过程逻辑控制                                                          设计S7-300 模块,80 mm 宽 40针前连接器,用于连接DI、DO和位置编码器 提供源极或漏极DO(依模块型号而定)带FM 352-5 程序的 MMC 卡插槽STOP、RUN 和 RESET 开关输入/输出地址分配(每16字节),用于与上位S7 CPU进行数据交换可运行FM 352-5 在具有S7-300的配置中可分布式作为标准PROFIBUS DP从站,通过IM 153-1/IM 153-2连接到S7-300、S7-400、WinAC或第3方主站的内置DP口上可单运行,不与上位PLC连接                                                          功能指令集: 二进制指令:
NO、NC、取反、输出、RS 存储器、SR 存储器、制定上升沿/下降沿 转换功能:
16 位整数转换为 32 位整数比较功能:
16/32 位整数时间发生器:
脉冲发生器、接通延迟、断开延迟,每个为 10μs 精度计数器功能:
16 位加计数,16 位减计数,32 位加/减计数其他功能:
频率发生器,频率刻度,位移寄存器实际值测量:通过下列方法获取实际值 带24号电压的增量编码器,或带5号电压的增量编码器(RS 422),或SSI 编码器增量编码器的计数器功能: 连续计数单个计数周期计数16或32位值内置用于位置编码器的24V电源包 可调节DI滤波器的定时器:
0, 5, 10, 15, 20, 50 μs 和 1.5 ms
运行模式在STEP 7中用LAD或FBD生成FM 352-5程序通过S7 CPU或PLCSIM仿真软件执行仿真和测试以目标代码形式编辑FM 352-5程序可直接通过S7 CPU或通过一个MMC卡直接向模块 数据在RUN位置:FPGA以1微秒循环时间处理程序。通过16位I/O接口与CPU进行数据交换。
西门子开出模块6ES7322-1HF01-9AJ0
通过 TCP/IP 或 UDP 与任何其他设备通信 2 2 通过检视菜单可以选择注解、网络注解(POU Comments)显示与否等。 4个输入可用来高速计数,高5KHz(只针对于直流型)。 SIMATIC S7-300 当在 ET 200M 中与有源总线模块一起使用时,可以进行热插拔,而不会有任何反应。 3 个 PROFINET IO 端口 (C240 PN) SIMOTION 技术包支持通过模块化方式进行功能扩展。 西门子针对客户的特定需求量身定制能源管理服务,以及集成的自动化楼宇解决方案,来帮助他们实现这些目标。控制暖通空调应用和照明及遮阳的楼宇自动化产品与系统,既在西门子直接提供的解决方案中使用,也通过间接分销渠道进行销售。 可靠运行 为CPU的本机I/O提供更多的数字量输入
设计 S7-300 一般步骤 S7-300自动化系统采用模块化设计。它拥有丰富的模块,且这些模块均可以立地组合使用。 一个系统包含下列组件: CPU: 不同的 CPU 可用于不同的性能范围,包括具有集成 I/O 和对应功能的 CPU 以及具有集成 PROFIBUS DP、PROFINET 和点对点接口的 CPU。 用于数字量和模拟量输入/输出的信号模块 (SM)。 用于连接总线和点对点连接的通信处理器 (CP)。 用于高速计数、定位(开环/闭环)及 PID 控制的功能模块(FM)。 根据要求,也可使用下列模块: 用于将 SIMATIC S7-300 连接到 120/230 V AC 电源的负载电源模块(PS)。 接口模块 (IM),用于多层配置时连接控制器 (CC) 和扩展装置 (EU)。 通过分布式控制器 (CC) 和 3 个扩展装置 (EU),SIMATIC S7-300 可以操作多达 32 个模块。所有模块均在外壳中运行,并且无需风扇。 SIPLUS 模块可用于扩展的环境条件: 适用于 -25 至 +60℃ 的温度范围及高湿度、结露以及有雾的环境条件。防直接日晒、雨淋或水溅,在防护等级为 IP20 机柜内使用时,可直接在汽车或室外建筑使用。不需要空气调节的机柜和 IP65 外壳。 设计 简单的结构使得 S7-300 使用灵活且易于维护: 安装模块: 只需简单地将模块挂在安装导轨上,转动到位然后锁紧螺钉。 集成的背板总线: 背板总线集成到模块里。模块通过总线连接器相连,总线连接器插在外壳的背面。 模块采用机械编码,更换为容易: 更换模块时,必须拧下模块的固定螺钉。按下闭锁机构,可轻松拔下前连接器。前连接器上的编码装置防止将已接线的连接器错插到其他的模块上。 现场可靠的连接: 对于信号模块,可以使用螺钉型、弹簧型或绝缘刺破型前连接器。 TOP 连接: 为采用螺钉型接线端子或弹簧型接线端子连接的 1 线 - 3 线连接系统提供预组装接线另外还可直接在信号模块上接线。 规定的安装深度: 所有的连接和连接器模块上的凹槽内,并有前盖保护。因此,所有模块应有明确的安装深度。 无插槽规则: 信号模块和通信处理器可以不受限制地以任何方式连接。系统可自行组态
要用数字电压表或精度为1%的表测量(2)电源机架,CPU主板都只能在主电源切断时取下,(3)在RAM模块从CPU取下或插入CPU之前,要断开PC的电源,这样才能保证数据不混乱,(4)在取下RAM模块之前。
WinCC将始终打开上一次退出之前所打开的项目,如果退出WinCC时,项目已经,则在运行系统中项目将再次打开,关闭WinCC项目管理器[文件"菜单,[退出"命令使用[文件"菜单中的[退出"菜单命令可关闭WinCC项目管理器。
程序的输入直接可接显示,更改程序的操作也可以直接根据所需要的地址编号或接点号进行搜索或程序寻找,然后进行更改,PLC有多种程序设计语言可供使用,用于梯形图与电气原理图较为接近,容易掌握和理解,PLC具有的自诊断功能对维修人员维修技能的要求降低。
西门子开出模块6ES7322-1HF01-9AJ0
在用户程序中,不可以同时编程SEND作业和FETCH作业。
即:
只要SEND作业(SFB 63)没有完全终止(DONE或ERROR),就不能调用FETCH作业(SFB 64)
(甚至在REQ=0的时候)。
只要FETCH作业(SFB 64)没有完全终止(DONE或ERROR),就不能调用SEND作业(SFB 63)
(甚至在REQ=0的时候)。
在处理一个主动作业(SEND作业、SFB 63或FETCH作业、SFB 64)时,同时可以处理一个被动作业
(SERVE作业、SFB 65)。
15:如何在已配置为DP从站的两个CPU模块间组态直接数据交换(节点间通信)?
两个CPU站配置为DP从站,而且由同一个DP主站操作,它们之间的通信通过配置交换模式为DX可以完成直接数据交换。
16:如何使用SFC65,SFC66,SFC67 和 SFC68 进行通信?
对于单向基本通信,使用系统功能 SFC67 (X_GET)从一个被动站读取数据,使用系统功能SFC68(X_PUT)将数据写入一个被动站(服务器)。这些块只有在主动站中才调用。对于一个双向基本通信,调用站中的系统功能SFC65 (X_SEND),在该站中想将数据发送到另一个主动站。在同样为主动的主动接收站中,数据将通过系统功能SFC66 (X_RCV)记录。
什么是自由分配 I/O 地址?
地址的自由分配意味着您可对每种模块(SM/FM/CP)自由的分配一个地址。地址分配在 STEP 7 里进行。先定义起始地址,该模块的其它地址以它为基准。
自由分配地址的优点:因为模块之间没有地址间隙,就可以优化地使用可用地址空间。在创建标准软件时,分配地址过程中可以不考虑所涉及的 S7-300 的组态。
18:诊断缓冲器能够干什么?
更快地识别故障源,因而提高系统的可用性。评估STOP之前的后事件,并寻找引起STOP的原因。
诊断缓冲器是一个带有单个诊断条目的循环缓冲器,这些诊断条目显示在事件发生序列中;一个条目显示的是近发生的事件。如果缓冲器已满, 早发生的事件就会被新的条目所覆盖。根据不同的CPU,诊断缓冲器的大小或者固定,或者可以通过HW Config中通过参数进行设置。
19:诊断缓冲器中的条目包括哪些?
1) 故障事件
2) 操作模式转变以及其它对用户重要的操作事件
3) 用户定义的诊断事件(用SFC52 WR_USMSG)
在操作模式STOP下,在诊断缓冲器中尽量少的存储事件,以便用户能够很容易在缓冲器中找到引起STOP的原因。因此,只有当事件要求用户产生一个响应(如计划系统内存复位,电池需要充电)或必须注册重要信息(如固件更新,站故障)时,才将条目存储在诊断缓冲器中
4. 模拟量模块分辨率和转换精度的区别?
分辨率是A/D模拟量转换芯片的转换精度,即用多少位的数值来表示模拟量。以下举例说明10位分辨率和11位分辨率的区别。S7-200 SMART CPU模拟量0~20mA的通道值范围为0~27648。如果分辨率为10位,则表示当外部电流信号的变化大于0.01953125mA时,模拟量A/D转换芯片才认为外部信号有变化。如果分辨率为11位,则表示当外部电流信号的变化大于0.009765625mA时,模拟量A/D转换芯片即认为外部信号有变化。
5. S7-200 SMART I/O扩展模块DIAG指示灯以红色闪烁的原因?
S7-200 SMART I/O扩展模块的DIAG指示灯以红色闪烁的原因有两个,建议查看CPU的信息来确认具体报错原因,查看CPU信息的方法请见硬件诊断或诊断方法举例。
(1) 模块缺少24V直流供电电源;I/O扩展模块缺少24V直流供电电源时,所有通道指示灯也以红色闪烁。建议核对模块接线图,尤其是模块供电端含两排端子的,确定供电接线是否正确,以EM D为例
模拟量模块上通道断线或是输入值超量程。模拟量模块上通道断线或是输入值超量程,除了会引起模块的DIAG指示灯以红色闪烁,断线或是超量程的通道的指示灯也以红色闪烁,以提示用户存在故障通道。
程序设计及工作过程分析
启动操作:按下启动按钮SB1,I0.0的动合触点闭合,M10.0产生启动脉冲,M10.0的动合触点闭合,使Q0.0保持接通,液体A电磁阀YV1打开,液体A流入容器。当液面上升到SL3时,虽然I0.4动合触点接通,但没有引起输出动作。当液面上升到SL2位置时,SL2接通,I0.3的动合触点接通,M10.3产生脉冲,M10.3的动合触点接通一个扫描周期,复位指令R  Q0.0使Q0.0线圈断开,YV1电磁阀关闭,液体A停止流入;与此同时,M10.3的动合触点接通一个扫描周期,保持操作指令S  Q0.1使Q0.1线圈接通,液体B电磁阀YV2打开,液体B流入。
当液面上升到SL1时,SL1接通,M10.2产生脉冲,M10.2动合触点闭合,使Q0.1线圈断开,YV2关闭,液体B停止注入,M10.2动合触点闭合,Q0.3线圈接通,搅匀电机工作,开始搅动。搅动电机工作时,Q0.3的动合触点闭合,启动定时器T37,过了6秒,T37动合触点闭合,Q0.3线圈断开,电机停止搅动。当搅匀电机由接通变为断开时,使M11.2产生一个扫描周期的脉冲,M11.2的动合触点闭合,Q0.2线圈接通,混合液电磁阀YV3打开,开始放混合液。
液面下降到SL3,液面传感器SL3由接通变为断开,使M11.0动合触点接通一个扫描周期,M20.1线圈接通,T1开始工作,2秒后混合液流完,T1动合触点闭合,Q0.2线圈断开,电磁阀YV3关闭。同时T1的动合触点闭合,Q0.0线圈接通,YV1打开,液体A流入,开始下一循环。
停止操作:按下停止按钮SB2,I0.1的动合触点接通,M10.1产生停止脉冲,使M20.0线圈复位断开,M20.0动合触点断开,在当前的混合操作处理完毕后,使Q0.0不能再接通,即停止操作。
(2)PLC与组态王通过以太网的方式通信的设置:
1、确认计算机中安装有以太网卡,并与PLC 连接到同一网络中(直接通过网线直连)。
2、通过Step7编程软件为通信模块(CP443-1)设定IP地址和子网掩码,并下传到PLC中如IP地址(192.168.0.1)、子网掩码(255.255.255.0)。 此步骤已经在博途中组态PLC的过程中完成了,通过PLC属性查看以太网地址。
3、为计算机设定IP地址和子网掩码,如IP地址(192.168.0.110)、子网掩码(255.255.255.0)。 这里以Win7系统为例 ※打开网络共享中心,双击更改适配器选项
40:在不改变硬件配置的情况下,能用SM321-1CH20 代替SM321-1CH80 吗?
SM321-1CH20 和SM321-1CH80 模块的技术参数是相同的。区别仅在SM321-1CH80 可以应用于更广泛的环境条件。因此您无需更改硬件配置。
41:进行I/O的直接访问时,必须注意什么?
需要注意在一个S7-300组态中,如果进行跨越模块的I/O直接读访问(用该命令一次读取几个字节),那么就会读到不正确的值。 可以通过hardware中查看具体的地址。
42:SM321模块是否需要连接到 DC 24V 上?
不需要,如果是 MLFB 为 6ES7 321-1BH02-0AA0 的 SM 321 模块,就不再需要连接 DC 24V 了。
43:在 STEP 7 硬件组态中如何规划模拟模块 SM374?在硬件目录中如何找到此模块?
模拟模块SM374可用于三种模式中:作为 16 通道数字输入模块,作为 16 通道数字输出模块,作为带 8 个输入和 8 个输出的混合数字输入/输出模块。
现在把SM374按照您需要模拟的模块来组态,就是说;
如果把 SM 374 用作为一个 16 通道输入模块,则组态一个 16 通道输入模块 - 推荐使用:SM 321: 6ES7321-1BH01-0AA0,
如果把 SM 374 用作为一个 16 通道输出模块,则组态一个 16 通道输出模块 - 推荐使用: SM 322: 6ES7322-1BH01-0AA0,
如果把 SM 374 用作为一个混合输入/输出模块,则组态一个混合输入/输出模块( 8 个输入,8 个输出) - 推荐使用:SM 323: 6ES7323-1BH01-0AA0。
44:当测量电流时,出现传感器短路的情况,模块6ES7 331-1KF0.-0AB0的模拟量输入I+是否会被破坏?
当测量电流时,出现传感器短路的情况,模块6ES7 331-1KF0.-0AB0的模拟输入 I+不会被破坏。该模块具有内置的过流保护功能。模块中每个50欧姆的电阻器前面具有一个PTC元件,用于防止模块的输入通道被破坏。
请注意,输入电压允许的长期大值为12V,短暂(多1秒)值为30V。
http://www.absygs.com

产品推荐