浔之漫智控技术(上海)有限公司
西门子ET200模块6ES7151-3AA23-0AB0
  • 西门子ET200模块6ES7151-3AA23-0AB0
  • 西门子ET200模块6ES7151-3AA23-0AB0
  • 西门子ET200模块6ES7151-3AA23-0AB0

产品描述

品牌西门子 产地德国 质保一年 可售卖地全国 加工定制
系统中有些PID控制的模拟量需要用趋势图来显示,UG00S-CW中显示趋势图并不复杂,先点一下趋势图的图标,在弹出的对话框中选择趋势图的类型,然后选择每条曲线对应的地址即可。但是在联机调试时却总是出现comunication error(通信错误)信息,经过排查发现问题出在趋势图上,如果将趋势图从程序中去掉,则一切正常,后来我就尝试先将西门子PLC中的对应的模拟量数据读入触摸屏的缓冲(即内部存储区),然后将趋势图每条曲线的地址改为对应的内部地址。经过联机调试,发现不再出现comunication error信息,但是趋势图的曲线的显示却不正常。经过观察,发现除了当模拟量的值为零时曲线显示正常,而为非零时曲线则指向无穷大。这个问题曾让笔者百思不得其解,后来终于想到有可能是西门子PLC和富士触摸屏在存储格式上可能会不兼容。原来富士触摸屏中趋势图中的模拟量一般都是双字(4字节),它从西门子PLC读取的顺序是将字读为高字,第二个字读为低字,而西门子PLC中模拟量的存储为先存低字再存高字,这样富士触摸屏从西门子PLC中读入的数据刚好都是高低字颠倒的。因为一般模拟量的值都比较小,所以高字都为零,这样相当于将原来的值乘了一个2的16次方的数,远远超过了模拟量的上限,所以才出现了以上情况。
6ES7518-4AP00-0AB0CPU 1518-4 PN/DP,3 MB 程序,10 MB 数据, 集成3PN,1DP6ES7517-3AP00-0AB0CPU 1517-3 PN/DP, 2MB程序,集成 2PN 接口,1 以太网接口,1DP 接口6ES7516-3AN00-0AB06ES7516-3AN01-0AB0CPU 1516-3 PN/DP:1 MB 程序,5 MB 数据;10 ns ;集成 2PN 接口,1 以太网接口,1DP 接口6ES7515-2AM00-0AB06ES7515-2AM01-0AB0CPU 1515-2 PN ,500K程序,3M数据,集成 2PN接口6ES7513-1AL00-0AB06ES7513-1AL01-0AB0CPU 1513-1 PN:300 KB 程序,1.5 MB 数据;40 ns;集成 2PN 接口,6ES7511-1AK00-0AB06ES7511-1AK01-0AB0CPU 1511-1 PN:150 KB 程序,1 MB 数据;60 ns;集成 2PN 接口,6ES7512-1DK00-0AB06ES7512-1DK01-0AB0CPU 1512SP-1 PN, 200KB 程序,1MB数据6ES7510-1DJ00-0AB06ES7510-1DJ01-0AB0CPU 1510SP-1 PN, 100KB 程序,750KB数据6ES7507-0RA00-0AB0PS:60 W,额定输入电压 AC/DC 120/230 V6ES7505-0RA00-0AB0PS:60 W, 额定输入电压 DC 24/48/60 V6ES7505-0KA00-0AB0PS:25 W,额定输入电压 DC 24 V6ES 8:模拟输出模块,8AQ,U/I ,高速6ES 2: 模拟输出模块,2 AQXU/I ,标准型,25mm,包含前连接器6ES 4:模拟输出模块,4AQ,U/I6ES7531-7NF10-0AB0AI 8:模拟输入模块
用于 S7-400H 和 S7-400F/FH 的 CPU
可在 S7-400H 容错自动化系统中使用
可通过 F 运行版*作为具有 F 功能的 CPU 在 S7-400F/FH 安全相关系统中使用
组合了 MPI/PROFIBUS DP-主接口,
带有 2 个用于同步模块的连接插槽
CPU 412-5H 拥有:
功能强大的处理器:
CPU 处理每条二进制指令的时间小于 31.25 ns。
1 MB RAM(512 KB 用于程序,512 KB 用于数据)
西门子ET200模块6ES7151-3AA23-0AB0
在新的全局数据块中,添加使用以下计数器数据类型之一的新静态变量。务必要考虑到想要用于预设值和计数值的类型。
– 在“保持性"(Retain) 列中,选中相应框以使该结构具有保持性。
– 重复此为要存储在该数据块中的所有计数器创建结构。
可以将每个计数器结构放置在的全局数据块中,也可以将多个计数器结构放置在同一个全局数据块中。
除计数器外,还可以将其它静态变量放置在该全局数据块中。 将多个计数器结构放置在同一个全局数据块中可总的块数。
– 可根据需要重命名计数器结构。
3. 打开程序块来选择保持性计数器的放置位置(OB、FC 或 FB)。
4. 将计数器指令放置在所需位置。
5. 在调用选项对话框出现后,单击“取消"按钮。
您现在应该看到新的计数器指令,在指令名称的上面和下面均显示“???"。
6. 在新的计数器指令上方,输入上面所创建全局数据块和计数器结构的名称(请勿使用助手浏览)(例如:“Data_block_3.Static_1")。
该选项仅对于将计数器放置在 FB 中有效。
该选项取决于 FB 属性是否“块访问"(Optimized block
access)(仅允许符号访问)。 要检查现有 FB
访问属性的组态情况,请在项目树中右键单击该
FB,选择“属性"(Properties),然后选择“特性"(Attributes)。
如果 FB “块访问"(Optimized block access)(仅允许符号访问):
1. 打开 FB 进行编辑。
2. 将计数器指令 FB 中的所需位置。
3. “调用选项"(Call options) 对话框出现后,单击“多重背景"(Multi instance) 图标。仅在将该指令放置于 FB 中后,“多重背景"(Multi instance) 选项才可用。
4. 如有需要,请在“调用选项"(Call options) 对话框中重命名计数器。
5. 单击“确定"(OK)
8. 在“静态"(Static) 下,找到刚刚创建的计数器结构。
9. 在此计数器结构的“保持性"(Retain) 列中,改为选择“保持性"(Retain)。此后只要从另一程序块调用此
FB,都将利用此接口定义(包含标有保持性的计数器结构)创建背景数据块。
如果 FB 未“块访问"(Optimized block
access),则块访问类型为访问,访问与 S7-300/400
组态兼容,且允许符号访问和直接访问。 要将多重背景分配给块访问
FB,请按以下步骤操作:
1. 打开 FB 进行编辑
2. 将计数器指令 FB 中的所需位置。
3. “调用选项"(Call options) 对话框出现后,单击“多重背景"(Multi instance) 图标。仅在将该指令放置于 FB 中后,“多重背景"(Multi instance) 选项才可用
4. 如有需要,请在“调用选项"(Call options) 对话框中重命名计数器
5. 单击“确定"(OK)。 计数器指令将出现在编辑器中并且预设值和计数值的类型为
INT,而 IEC_COUNTER 结构将出现在“FB 接口"(FB Interface) 的“静态"(Static) 下
6. 如有需要,请在计数器指令中将类型从 INT 更改为其它类型之一。计数器结构将相应更改
西门子ET200模块6ES7151-3AA23-0AB0
可参数化的特性
可使用 STEP 7 工具“Hardware Configuration”对 S7-400(包括 CPU)的性能和响应进行编程,如:
MPI 多点接口:
定义站地址。
启动/循环行为。
定义大循环时间和通信负荷。
地址分配:
I/O 模块的编址。
保持区域:
定义具有保持特性的位存储器、计数器、定时器、数据块和时钟存储器的数量。
过程映像,局部数据的大小。
诊断缓存区的长度。
保护等级:
定义程序和数据访问*。
系统诊断:
定义诊断报文的处理及范围。
循环中断:
设定周期。
PROFINET 接口
通过 NTP 协议对时间同步进行参数化
显示功能与信息功能
状态和故障指示灯:
LED 可指示出内部和外部故障和运行状态,如 RUN(运行)、STOP(停止)、调试和测试功能等。
测试功能:
可使用编程设备显示程序执行中的信号状态,不考虑用户程序而修改过程变量,输出堆栈存储器的内容,运行各个程序步骤,并禁用程序组件。
信息功能:
用户可获取有关 CPU 的存储器容量和运行模式以及 RAM 和装载存储器的当前利用率方面的信息。
通信
*控制器与故障安全 ET 200 模块之间的安全通信和标准通信是通过 PROFIBUS DP 和/或 PROFINET 完成的。通过特别开发的 PROFIBUS profile PROFIsafe,可以在标准数据报文中传输带有安全功能的用户数据。无需其它硬件组件(例如安全总线)。必要的软件已经或者作为扩展集成在硬件组件之中,或者作为认证软件块重载至CPU内。
操作模式
F-CPU 的安全功能包含在 CPU 的 F 程序中以及故障安全信号模块中。
信号模块采用差异分析方法和测试信号注入技术实现输出和输入信号的。
借助周期性自检、指令检测、程序逻辑检测和程序顺序流检测等方法,CPU可以检测控制器是否工作正常。此外,通过“活跃标志(sign-of-life)”请求,还可以对I/O进行检测。
若判定系统中存在故障,则将该系统切换至安全状态。
CPU 414F-3 PN/DP 的运行不需要 F 运行版
CPU 414F-3 PN/DP 的编程方法与 SIMATIC S7 系统的编程方法相同. 使用现场实证过的编程工具,例如STEP 7,创建用于非故障安全工厂区段的用户程序。
选件包 SIMATIC S7 Distributed Safety (Classic) 和SIMATIC Safety Advanced V12 (TIA Portal V12)
STEP 7 选件包“SIMATIC S7 Distributed Safety”(Classic) 或 SIMATIC Safety Advanced V12 (TIA Portal V12) 用于对与安全型程序段进行编程。选件包中包括所有用来创建 F 程序的所有功能和块。
具有安全功能的 F 程序以 F_FBD 或 F-LAD 方式进行连接,或利用 F 功能库中的功能数据块进行连接。使用 F FBD 或 F LAD 可提供跨系统的统一表示,因而简化系统的组态和编程以及验收测试。无需借助额外的功具,程序员就可以完全专注于编制安全相关的应用程序。
西门子ET200模块6ES7151-3AA23-0AB0
PROFINET IM 155-6PN 基本型接口模块
IM 155-6PN BA 主要用于简单 PROFINET 应用,进行多 12 个模块(多 192 个 IO 信号)的中等站扩展,每个模块具有 32 字节(用于输入数据和输出数据)。除了PROFIsafe之外的所有I / O模块均可使用。因此,它是用于完成简单的机器与改装任务的经济解决方案。
IM 155-6PN 标准型接口模块 (PROFINET)
IM 155-6PN 标准型接口模块主要用于多 32 个模块(多 512 个 IO 信号)的平均站扩展的 标准 PROFINET 应用。所有 I/O 模块(包括 PROFIsafe 模块)都可以使用。另外,还可以使用 BA-Send/BU-Send,通过 SIMATIC ET 200AL 系列的多达 16 个 IP67 模块对站进行扩展。配有铜缆接口的所有 Simatic 总线适配器都可以使用。
IM 155-6PN 高性能型接口模块 (PROFINET)
IM 155-6PN 高性能型接口模块主要用于对功能需求较高且灵活的 PROFINET 应用,并用于多 64 个模块(多 1024 个 IO 信号)的大型站扩展。所有 I/O 模块(包括 PROFIsafe 模块)都可以使用。另外,还可以使用 BA-Send/BU-Send,通过 SIMATIC ET 200AL 系列的多达 16 个 IP67 模块对站进行扩展。
与其它接口模块不同的是,IM 155-6PN HF 支持以下附加功能:
使用具有光缆接口的总线适配器
数据量增加,输入和输出数据多 1440 字节,每个模块多 288 字节
单次热插拔(在运行过程中拔出和插入 I/O 模块而不会影响其余模块的通信)
S2 冗余
250 µs 等时同步模式
过采样
MSI/MSO
支持多达 4 个控制器的共享设备
每个模块多 4 个子插槽
IM 155-6PN 高性能型接口模块 (PROFINET)
IM 155-6PN 高速型接口模块主要用于响应时间短的 PROFIBUS 应用。所有 I/O 模块(包括 PROFIsafe 模块)都可以使用。
与 IM 155-6PN HF 相比,IM 155-6PN HS 具有以下功能差别:
每个模块多 32 字节输入和输出数据,每个站多 30 个模块
125 µs 等时同步模式
MRPD
PROFINET 性能升级(快速转发、动态帧封装、分片)
IM 155-6DP 高性能型接口模块 (PROFIBUS)
IM 155-DP 高性能型接口模块主要用于多 32 个模块(多 512 个 IO 信号)的平均站扩展的 PROFIBUS 应用。所有 I/O 模块(包括 PROFIsafe 模块)都可以使用。另外,还可以使用 BA-Send/BU-Send,通过 SIMATIC ET 200AL 系列的多达 16 个 IP67 模块对站进行扩展
输入通道中的检测信号一般较弱、传输距离较长,使现场干扰和电路结构模数混杂等因素很容易进入通道。保护方法可在输入端外加一级光电耦合器,一旦有高压电压等侵入回路时,使其击穿保护级光耦,可保护回路
使用 GSD 文件组态 HART 模拟模块
使用 GSD 文件组态
可以使用 IM 153-2BA02-0XA0 的当前 GSD 文件组态模块,步骤如下:
1. 在所需插槽中插入 HART 模拟量模块。
2. 通过双击模块参数化诊断功能。
3. 创建一个 DB,例如 DB128。DB 的内容必须包括参数数据记录 1 的动态参数
用 AI-HART 的 SFC 58“WR_REC”写入 DB128 的示例
可以进行以下假设:
• ET 200M 的模块地址是 512 (200H)。
• 该参数记录存储在 DB128 中:自地址 0.0 开始,长度为 46 个字节。
• 组态数据将以 DB128 的形式传送。
组态 HART 变量
简介
许多 HART 现场设备可提供一些额外的测量量(例如,传感器温度)。如果在 PDM 的现场
设备组态中进行了相应的设置,就可以读出这些量。使用 HART 变量,可以在自动化系统的
I/O 区域中直接采用现场设备中已设置的测量值。
无论组态通道的数量是多少,多可以为 HART 模块分配 8 个 HART 变量,每个通道的 HART
变量不超过 4 个。可以在模块的属性对话框中为通道分配 HART 变量。
地址分配
HART 模块占用 16 个输入/输出字节。如果组态 HART 变量,则该模块将为每个 HART 变量
多占用 5 个字节。
如果使用所有 8 个 HART 变量,则 HART 输入模式总共占用 56 个输入/输出字节(16 个字节)
+ 8 x 5 个字节 = 56 个字节)。
“无”组态不占用其它输入字节
1、 RS485串口通信
第三方设备大部分支持,西门子S7PLC可以通过选择自由口通信模式控制串口通信。简单的情况是只用发送指令(XMT)向打印机或者变频器等第三方设备发送信息。不管任何情况,都必须通过S7PLC编写程序实现。
当选择了自由口模式,用户可以通过发送指令(XMT)、接收指令(RCV)、发送中断、接收中断来控制通信口的操作。
2、PPI通信
PPI协议是S7-200CPU基本的通信方式,通过原来自身的端口(PORT0或PORT1)就可以实现通信,是S7-200CPU默认的通信方式。
PPI是一种主-从协议通信,主-从站在一个令牌环网中。在CPU内用户网络读写指令即可,也就是说网络读写指令是运行在PPI协议上的。因此PPI只在主站侧编写程序就可以了,从站的网络读写指令没有什么意义。
3、MPI通信
MPI通信是一种比较简单的通信方式,MPI网络通信的速率是19.2Kbit/s~12Mbit/s,MPI网络多支持连接32个节点,通信距离为50M。通信距离远,还可以通过中继器扩展通信距离,但中继器也占用节点。
MPI网络节点通常可以挂S7-200、人机介面、编程设备、智能型ET200S及RS485中继器等网络元器件。
西门子PLC与PLC之间的MPI通信一般有3种通信方式:
1)全局数据包通信方式
2)无组态连接通信方式
3)组态连接通信方式
http://www.absygs.com

产品推荐