浔之漫智控技术(上海)有限公司
6ES73136BF030AB0 质保一年
  • 6ES73136BF030AB0 质保一年
  • 6ES73136BF030AB0 质保一年
  • 6ES73136BF030AB0 质保一年

产品描述

是否进口 加工定制 产品认证CE 系列300 可售卖地全国 是否跨境货源 结构形式:模块 安装方式:现场安装 功能:PLC/CPU 加工定制:
西门子工业电源 SITOP PSU8600 电源
产品基本特性
• 基本性能参数: 宽度仅为80mm(设计极其紧凑) , 效率94%(效率极高) , 输
出: 24VDC/20A, 24VDC/40A
• 集成Ethernet/Profinet接口(全球款集成Profinet接口的电源) , 可完全集成于西门
子 TIA 博途和 PCS7
• 多路输出, 每路输出可单配置, 输出电压 5-28VDC 连续可调, 输出电流0.5-10A
连续可调
• 预防性, 可实现远程和实时诊断功能, 实时读取每路负载电压和电流参数
• 模块化扩展, 通过环夹直接扩展, 无需额外布线连接
综上所述, 此款电源为全球款真正具备智能通讯, 真正具有高度集能的全新一代
工业电源产品。
外形尺寸为 FSGX 的功率模块 PM240 的备用柜门柜门总成备件,针对外形尺寸为 FSGX 的功率模块 PM240。功率模块 PM230 和 PM240-2 的风扇单元功率模块 PM230 和 PM240-2 的风扇的设计寿命很长。同时我们也提供备件风扇以应对需求,其可简单快速地进行更换。功率模块 PM240 和 PM250 的备用风扇功率模块 PM240 和 PM250 的风扇的设计寿命很长。同时也可订购备用风扇以应对需求。
电源解决方案
SITOP Modular 电源可的功能需求, 例如用于复杂的设备和机器。 宽范围输入使
它可以适应上的多种供电网络, 甚至在大幅电压波动情况下也可保证高度的。 功
率推进功能可以在电源负载出现短路时,瞬时提供三倍额定电流输出。
全新的单相SITOP PSU8200产品, 单相110/220VAC供电网络, 体积更小, 效率更
高, 并可提供“24V OK” 节点和远程开关机功能。
升级的SITOP PSU200M产品, 除保留原先优异的技术参数外, 效率近一步, 体积
更加紧凑, 并可提供“24V OK” 节点。
产品基本特性
• 紧凑的金属外壳, 电源侧面无需额外散热空间
• 过载时可提供额外的功率输出, 并且功率推进功能触发设备有效保护
• 通过设置拨码 A, 转换为并联运行的软特性曲线
• 3 个 LED 指示灯使电源的工作状态一目了然
• 可与 SITOP 附加模块组合使用
③ 板 (SB)(数字 SB、模拟 SB),通信板 (CB) 或 电池板 (BB) CPU(CPU
1 安装 TS(远程服务) Adapter IE Advanced 或 IE Basic 之前,必须先连接 TS 适配器和
下列电子选型工具和配置工具可用于 SINAMICS G120 型变频器:
Drive Technology Configurator (DT Configurator) 包含在 CA 01 中交互式产品样本 CA 01 - 西门子工业与驱动技术集团的离线版网上商城(DVD 光盘),含有涵盖约 5 百万种驱动技术产品类型的超过 100000 多个产品。因此,西门子推出了 Drive Technology
Configurator (DT Configurator),以协助您从丰富的驱动产品中选择的电机和/或变频器。该工具作为选型指南集成在产品样本 CA 01 中。
在线 DT Configurator此外,DT Configurator 还可以免安装、直接在线使用。
SIZER for Siemens Drives 选型工具通过 SIZER for Siemens Drives 选型工具可方便地实现对 SINAMICS 及MICROMASTER 4 系列驱动的选型。该可协助您选择执行驱动任务所需的硬件组件和固件组件。SIZER for Siemens Drives 涵盖了整个驱动的选型设计。SIZER for Siemens Drives 选型工具的更多相关信息请见配置工具一章。
STARTER 调试工具通过 STARTER 调试工具可在菜单的引导下实现调试、和诊断。除 SINAMICS 驱动外,STARTER 还适用于 MICROMASTER 4。调试工具 STARTER 的更多相关信息请见 “ 配置工具 ”。
CARD NECESSARY‘CPU具有很高的处理性能,大容量程序存储器和程序框架 用于系列机器、机器以及工厂中的跨领域自动化任务 与集中式I/O和分布式I/O一起,可用作生产线上的控制器 PROFINETI/O控制器,用于在PROFINET上运行分布式I/O 用于连接 CPU 作为 SIMATIC 或 非西门子 PROFINET I/O 控制器下的 PROFINET 设备的 PRIFINET 智能设备 用于 2 端扣交换机的 PROFINET 接口 PRIFIBUS 或 PROFINET 上的等时同步模式 集成 Web 服务器,带有创建用户定义的 Web 站点的选项 在基于组件的自动化中实现分布式智能系统(PROFINET) PROFINET 代理,用于基于部件的自动化(CBA)中的 PROFIBUS DP 智能设备 可以选用SIMATIC工程工具 CPU 319-3 PN/DP是快速的S7-300 CPU,具有大容量程序存储器.除了用于集中式I/O外,还可用于分布式自动化结构中。例如,用于生产线上的集中控制器或具有高速处理的机床控制器。 其程序框架特别适用于使用SIMATIC工程工具,例如: 用SCL编程 用 S7-GRAPH 进行顺序控制编程 因此,该CPU特别适用于通过软件实现的技术功能任务,例如: 用Easy Motion Control实现运动控制 用STEP 7块或标准/模块化PID控制实时软件解决闭环控制任务 通过使用 SIMATIC S7-PDIAG 加强过程诊断能力。 通过CPU内置的通讯设备,无需其它组件即可实现网络自动化解决方案. Design CPU 319-3 PN/DP 装配有: 通过附加的ERTEC 400 ASIC实现多处理器系统,满足PROFINET通讯 极高的处理性能和通讯性能 2 MB RAM(可存储约 680 K 条指令);通过扩展RAM执行用户程序,可以显着提高用户程序的空间。作为程序装载存储器的微型存储卡(大为 8 MB)也允许将可以项目(包括符号和注释)保存在 CPU 中。装载存储器还可用于数据归档和配方管理。 灵活的扩展能力;多达 32 个模块,(4排结构) MPI/DP 组合接口;第1个内置 DP 接口可以多同时建立 32 个与 S7-300/400 或与 PG、PC、OP 的连接。在这些连接中,始终分别为 PG 和 OP 各保留一个连接。MPI 可以通过“全局数据通讯”与多32个CPU组建简单的网络。该接口可从MPI接口重新设置为DP接口。PROFIBUS DP 接口:全面支持 PROFIBUS DP V1 标准。这将增加 DP V1 标准从站在诊断和参数赋值能力的范围。 DP 接口;第2个内置 DP 接口可以多同时建立 32 个与 S7-300/400 或与 PG、PC、OP 的连接。在这些连接中,始终分别为 PG 和 OP 各保留一个连接。DP接口可作为DP主站或DP从站使用。在该接口上,PROFIBUS DP从站可在等时模式下运行.全面支持 PROFIBUS DP V1 标准。这将增加 DP V1 标准从站在诊断和参数赋值能力的范围。 以太网接口;CPU 319-3 PN/DP 的第 3 个集成接口是一个基于以太网 TCP/IP 的 PROFINET 接口,带有双端扣交换机。它支持下列协议: S7通讯用于在SIMATIC控制器间进行数据通讯 PG/OP 通讯,用于通过 STEP 7 进行编程、调试和诊断 与HMI和SCADA连接的PG/OP通讯 在PROFINET上实现开放的TCP/IP、UDP和ISO-on-TCP (RFC1006)通讯 SIMATIC NET OPC-Server用于与其它控制器以及CPU自带的I/O设备进行通讯
用于 SIMATIC S7-400H 和 S7-400F/FH。
可应用在高可用性的 S7-400H 系统中
可与故障安全 S7-400F/FH 系统中 F 运行授权与 F 兼容 CPU 一起使用。
带有内置的 PROFIBUS DP 主站接口
带两个用于 Sync 模块的插槽
CPU 414–5H 是用于 SIMATIC S7-400H 和 S7-400 F/FH 的 CPU。它允许配置为一个容错的 S7-400H 系统。它可与 F 运行授权一起用于故障安全 S7-400®F/FH 自动化系统。内置的PROFIBUS-DP接口使它能够作为主站或从站直接连接到PROFIBUS-DP现场总线。
6ES73136BF030AB0
PLC的工作原理
一. 扫描技术
当PLC投入运行后,其工作过程一般分为三个阶段,即输入采样、用户程序执行和输出刷新三个阶段。完成上述三个阶段称作一个扫描周期。在整个运行期间,PLC的CPU以一定的扫描速度重复执行上述三个阶段。
(一) 输入采样阶段
在输入采样阶段,PLC以扫描方式依次地读入所有输入状态和数据,并将它们存入I/O映象区中的相应得单元内。输入采样结束后,转入用户程序执行和输出刷新阶段。在这两个阶段中,即使输入状态和数据发生变化,I/O映象区中的相应单元的状态和数据也不会改变。因此,如果输入是脉冲信号,则该脉冲信号的宽度必须大于一个扫描周期,才能保证在任何情况下,该输入均能被读入。
(二) 用户程序执行阶段
在用户程序执行阶段,PLC总是按由上而下的顺序依次地扫描用户程序(梯形图)。在扫描每一条梯形图时,又总是先扫描梯形图左边的由各触点构成的控制线路,并按先左后右、先上后下的顺序对由触点构成的控制线路进行逻辑运算,然后根据逻辑运算的结果,刷新该逻辑线圈在系统RAM存储区中对应位的状态;或者刷新该输出线圈在I/O映象区中对应位的状态;或者确定是否要执行该梯形图所规定的功能指令。
即,在用户程序执行过程中,只有输入点在I/O映象区内的状态和数据不会发生变化,而其他输出点和软设备在I/O映象区或系统RAM存储区内的状态和数据都有可能发生变化,而且排在上面的梯形图,其程序执行结果会对排在下面的凡是用到这些线圈或数据的梯形图起作用;相反,排在下面的梯形图,其被刷新的逻辑线圈的状态或数据只能到下一个扫描周期才能对排在其上面的程序起作用。
(三) 输出刷新阶段
当扫描用户程序结束后,PLC就进入输出刷新阶段。在此期间,CPU按照I/O映象区内对应的状态和数据刷新所有的输出锁存电路,再经输出电路驱动相应的外设。这时,才是PLC的真正输出。
56、模拟量应该如何换算成期望的工程量值?
模拟量的输入/输出都可以用下列的通用换算公式换算:
Ov=【(Osh-Osl)*(Iv-Isl)/(Ish-Isl)】+Osl
其中
Ov:换算结果
Iv:换算对象
Osh:换算结果的高限
Osl:换算结果的低限
Ish:换算对象的高限
Isl:换算对象的低限
57、S7-200模拟量输入信号的精度能达到多少?
拟量输入模块有两个参数容易混淆:
1)模拟量转换的分辨率;
2)模拟量转换的精度(误差);
分辨率是A/D模拟量转换芯片的转换精度,即用多少位的数值来表示模拟量。S7-200模拟量模块的转换分辨率是12位,能够反映模拟量变化的小单位是满量程的1/4096。
模拟量转换的精度除了取决于A/D转换的分辨率,还受到转换芯片的电路的影响。在实际应用中,输入的模拟量信号会有波动、噪声和干扰,内部模拟电路也会产生噪声、漂移,这些都会对转换的后精度造成影响。这些因素造成的误差要大于A/D芯片的转换误差。
58、为什么模拟量是一个变动很大的不稳定的值?
可能是如下原因:
1)你可能使用了一个自供电或隔离的传感器电源,两个电源没有彼此连接,即模拟量输入模块的电源地和传感器的信号地没有连接。这将会产生一个很高的上下振动的共模电压,影响模拟量输入值。
2)另一个原因可能是模拟量输入模块接线太长或绝缘不好。
59、EM231模块上的SF红灯为何闪烁?
SF红灯闪烁有两个原因:模块内部软件检测出外接热电阻断线,或者输入超出范围。由于上述检测是两个输入通道共用的,所以当只有一个通道外接热电阻时,SF灯必然闪烁。解决方法是将一个100Ohm的电阻,按照与已用通道相同的接线方式连接到空的通道;或者将已经接好的那一路热电阻的所有引线,一一对应连接到空的通道上。
60、什么是正向标定、负向标定?
正向标定值是3276.7度(华氏或摄氏),负向标定值是-3276.8度。如果检测到断线、输入超出范围时,相应通道的数值被自动设置为上述标定值。
6ES73136BF030AB0
PLC的I/O响应时间
为了增强PLC的抗干扰能力,提高其可*性,PLC的每个开关量输入端都采用光电隔离等技术。
为了能实现继电器控制线路的硬逻辑并行控制,PLC采用了不同于一般微型计算机的运行方式(扫描技术)。
以上两个主要原因,使得PLC得I/O响应比一般微型计算机构成的工业控制系统满的多,其响应时间至少等于一个扫描周期,一般均大于一个扫描周期甚至更长。
所谓I/O响应时间指从PLC的某一输入信号变化开始到系统有关输出端信号的改变所需的时间。其短的I/O响应时间与长的I/O响应时间如图所示:
第(n-1)个
扫描周期
短I/O响应时间:
长I/O响应时间
SIEMENS PLC在中国的产品,根据规模和性能的大小,主要有 S7-300 S7-300 和S7-400三种,下面就简单介绍一下该三种产品的一些特性。
S7-300
针对低性能要求的摸块化小控制系统,它多可有7个模块的扩展能力,在模块中集成背板总线,它的网络联接有RS-485通讯接口和Profibus两种,可通过编程器PG访问所有模块,带有电源、CPU和I/O的一体化单元设备。
其中的扩展模块(EM)有以下几种:数字量输入模块(DI)——24VDC 和 120/230VAC;数字量输出(DO)——24VDC 和 继电器;模拟量输入模块(AI)——电压、电流、电阻和热电偶;模拟量输出模块——电压和电流。  还有一个比较的模块-通讯处理器(CP)——该块的功能是可以把S7-300作为主站连接到AS-接口(传感器和执行器接口),通过AS-接口的从站可以控制多达248个设备,这样就可以显著的扩展S7-300的输入和输出点数。
1、为什么要用PC/PPI接口?
因S7200CPU使用的是RS485,而PC机的COM口采用的是RS232,两者的电气规范并不相容,需要用中间电路进行匹配。PC/PPI其实就是一根RS485/RS232的匹配电缆。
2、晶体管输出与继电器输出各自的优点如何?
晶体管不能带AC220V的交流负载,只能带低压的直流。对抗过载和过压的能力差。但可以高频输出,适合高频率输出的场合,例如脉冲控制。
继电器可以带AC220V和直流的负载。但由于继电器本身的特性决定了它不能高频输出。同时继电器通断的寿命一搬在10万次左右。所以在频繁通断的场合也适合用晶体管的
标准型S7-300 CPU除了CPU 318-2 DP的数据保持问题:
1.存储器M定时器T计数器C的可保持性取决于是否被组态为保持,如果定义为非保持,则Stop->Run或者Power off/on均被复位,如果被组态为保持,则Stop->Run或者Power off/on均被保持,不管有无电池。但注意,无电池时,必须要有FEPROM程序备份,否则,组态丢失。
S7-300/400属于模块式PLC,主要由机架CPU模块信号模块功能模块接口模块通信处理器电源模块和编程设备操作员站和操作屏组成。
逻辑运算关系表 在CPU模块上有存储器用来存放系统程序用户程序逻辑变量和其它一些信息,包括ROM和RAM。可通过扩展槽扩展用户RAM。RAM:主程序区OB1+子程序区FBFCB定时中断块等断电时由锂电池供电几年以免RAM中信息丢失。锂电池电压<规定值,灯报警,换电池期间靠电容充电几分钟。
PLC采用循环执行用户程序的方式。OB1是用于循环处理的组织块主程序,它可以调用别的逻辑块,或被中断程序组织块中断。在起动完成后,不断地循环调用OB1,在OB1中可以调用其它逻辑块FB, SFB, FC或SFC。循环程序处理过程可以被某些事件中断。在循环程序处理过程中,CPU并不直接访问I/O模块中的输入地址区和输出地址区,而是访问CPU内部的输入/输出过程映像区。批量输入批量输出。
西门子S7-300plc和S7-200的以太信程序
完成以太网向导配置后需要在程序中调用以太网向导生成的ETHx_CTRL和ETH0_XFR,然后,将整个项目到作客户端的S7-200 CPU上。1. 调用向导生成的子程序,实现数据传输对于S7-200的同一个连接的多个数据传输,不能同时,必须分时调用。
1系统存储器:
系统存储器用于存放输入输出过程映像区PII,PIQ位存储器M定时器T和计数器C块堆栈和中断堆栈以及临时存储器本地数据堆栈。
对于标准型S7-300CPU,每次拔卡后上电或者插卡后上电,CPU都会要求执行复位,Stop 灯出现慢闪,需要用MRES复位用MRES复位注意:拔卡和插卡均只可在掉电时进行。对于S7-400CPU每次拔卡后上电或者插卡后上电CPU都不会要求执行复位,但在拔卡后,工作存储器的程序自动丢失,即使有后备电池也一样。
6ES73136BF030AB0
西门子PLC S7-300系列PLC安装及注意事项
西门子S7-300安装注意事项一) 电源功率较小,只能带动小功率的设备(光电传感器等);
西门子S7-300安装注意事项二) 一般PLC均有一定数量的占有点数(即空地址接线端子),不要将线接上;
西门子S7-300安装注意事项三) PLC存在I/O响应延迟问题,尤其在快速响应设备中应加以注意。
西门子S7-300安装注意事项四) 输出有继电器型,晶体管型(高速输出时宜选用),输出可直接带轻负载(LED指示灯等);
西门子S7-300安装注意事项五) 输入/断开的时间要大于PLC扫描时间;
西门子S7-300安装注意事项六) PLC输出电路中没有保护,因此应在外部电路中串联使用熔断器等保护装置,防止负载短路造成损坏PLC;
西门子S7-300安装注意事项七) 不要将交流电源线接到输入端子上,以免烧坏PLC;
西门子S7-300安装注意事项八) 接地端子应立接地,不与其它设备接地端串联,接地线裁面不小于2mm2;
西门子S7-300安装注意事项九) 输入、输出信号线尽量分开走线,不要与动力线在同一管路内或捆扎在一起,以免出现干扰信号,产生误动作;信号传输线采用屏蔽线,并且将屏蔽线接地;为保证 信号可靠,输入、输出线一般控制在20米以内;扩展电缆易受噪声电干扰,应远离动力线、高压设备等。
西门子代理商(中国)有限公司20个不同的CPU: 7种标准型CPU(CPU 312,CPU 314,CPU 315-2 DP,CPU 315-2 PN/DP,CPU 317-2 DP,CPU 317-2 PN/DP,CPU 319-3 PN/DP) 6 个紧凑型 CPU(带有集成技术功能和 I/O)(CPU 312C、CPU 313C、CPU 313C-2 PtP、CPU 313C-2 DP、CPU 314C-2 PtP、CPU 314C-2 DP) 5 个故障安全型 CPU(CPU 315F-2 DP、CPU 315F-2 PN/DP、CPU 317F-2 DP、CPU 317F-2 PN/DP、CPU 319F-3 PN/DP) 2种技术型CPU(CPU 315T-2 DP, CPU 317T-2 DP) 18种CPU可在-25?C 至 60?C的扩展的环境温度范围中使用 具有不同的性能等级,满足不同的应用领域。
SIMATIC S7-300 提供多种性能等级的 CPU。除了标准型 CPU 外,还提供紧凑型 CPU。
同时还提供技术功能型 CPU 和故障安全型 CPU。
下列标准型CPU 可以提供:
CPU 312,用于小型工厂
CPU 314,用于对程序量和指令处理速率有额外要求的工厂
CPU 315-2 DP,用于具有中/大规模的程序量以及使用PROFIBUS DP进行分布式组态的工厂
CPU 315-2 PN/DP,用于具有中/大规模的程序量以及使用PROFIBUS DP和PROFINET IO进行分布式组态的工厂,在PROFInet上实现基于组件的自动化中实现分布式智能系统
CPU 317-2 DP,用于具有大容量程序量以及使用PROFIBUS DP进行分布式组态的工厂
CPU 317-2 PN/DP,用于具有大容量程序量以及使用PROFIBUS DP和PROFINET IO进行分布式组态的工厂,在PROFInet上实现基于组件的自动化中实现分布式智能系统
CPU 319-3 PN/DP,用于具有大容量程序量何组网能力以及使用PROFIBUS DP和PROFINET IO进行分布式组态的工厂,在PROFInet上实现基于组件的自动化中实现分布式智能系统
下列紧凑型CPU 可以提供:
CPU 312C,具有集成数字量 I/O 以及集成计数器功能的紧凑型 CPU
CPU 313C,具有集成数字量和模拟量 I/O 的紧凑型 CPU
CPU 313C-2 PtP,具有集成数字量 I/O 、2个串口和集成计数器功能的紧凑型 CPU
CPU 313C-2 DP,具有集成数字量 I/O 、PROFIBUS DP 接口和集成计数器功能的紧凑型 CPU
CPU 314C-2 PtP,具有集成数字量和模拟量 I/O 、2个串口和集成计数、定位功能的紧凑型 CPU
CPU 314C-2 DP,具有集成数字量和模拟量 I/O、PROFIBUS DP 接口和集成计数、定位功能的紧凑型 CPU
CPU 319F-3 PN/DP,用于具有大容量程序量以及使用PROFIBUS DP和PROFINET IO进行分布式组态的故障安全型 功能表图能表图中选择序列和并行序列的编程问题 循环和跳步都属于选择序列的情况。对选择序列和并行序列编程的关键在于对它们的分支和合并的处理,转换实现的基本规则是设计复杂梯形图的基本准则。与单序列不同的是,在选择序列和并行序列的分支、合并处,某一步或某一转换可能有几个前级步或几个后续步,在编程时应注意这个问题。 1.选择序列的编程 (1)使用STL指令的编程 如图5-35所示,步S0之后有一个选择序列的分支,当步S0是活动步,且转换条件X0为“1”时,将执行左边的序列,如果转换条件X3为“1”状态,将执行右边的序列。步S32之前有一个由两条支路组成的选择序列的合并,当S31为活动步,转换条件X1,或者S33为活动步,转换条件X4,都将使步S32变为活动步,同时程序使原来的活动步变为不活动步。 图5-35 选择序列的功能表图一 如图5-36所示为对图5-35采用STL指令编写的梯形图,对于选择序列的分支,步S0之后的转换条件为X0和X3,可能分别进展到步S31和S33,所以在S0的STL触点开始的电路块中,有分别由X0和X3作为置位条件的两条支路。对于选择序列的合并,由S31和S33的STL触点驱动的电路块中的转换目标均为S32。 图5-36 选择序列的梯形图一 在设计梯形图时,其实没有必要特别留意选择序列的如何处理,只要正确地确定每一步的转换条件和转换目标即可。 (2)使用通用指令的编程 如图5-38所示对图5-37功能表图使用通用指令编写的梯形图,对于选择序列的分支,当后续步M301或M303变为活动步时,都应使变为不活动步,所以应将M301和M303的常闭触点与线圈串联。对于选择序列的合并,当步M301为活动步,并且转换条件X1,或者步M303为活动步,并且转换条件X4,步M302都应变为活动步,M302的起动条件应为:,对应的起动电路由两条并联支路组成,每条支路分别由M301、X1和M303、X4的常开触点串联而成。 图5-37 选择序列功能表图二 图5-38 选择序列的梯形图二 (3)以转换为中心的编程 如图5-39所示是对图5-37采用以转换为中心的编程设计的梯形图。用仿STL指令的编程来设计选择序列的梯形图,请读者自己编写。 图5-39 选择序列的梯形图三 2.并行序列的编程 (1)使用STL指令的编程 如图5-40所示为包含并行序列的功能表图,由S31、S32和S34、S35组成的两个序列是并行工作的,设计梯形图时应保证这两个序列同时开始和同时结束,即两个序列的步S31和S34应同时变为活动步,两个序列一步S32和S35应同时变为不活动步。并行序列的分支的处理是很简单的,当步S0是活动步,并且转换条件X0=1,步S31和S34同时变为活动步,两个序列开始同时工作。当两个前级步S32和S35均为活动步且转换条件,将实现并行序列的合并,即转换的后续步S33变为活动步,转换的前级步S32和S35同时变为不活动步。 设计PLC控制时应遵循的基本原则 任何一种控制都是为了实现被控对象的工艺要求,以生产效率和产品。因此,在设计PLC控制时,应遵循以下基本原则: 1.限度地被控对象的控制要求 充分发挥PLC的功能限度地被控对象的控制要求,是设计PLC控制的首要前提,这也是设计中重要的一条原则。这就要求设计人员在设计前就要深入现场进行调查研究,收集控制现场的资料,收集相关的国内、国外资料。同时要注意和现场的工程人员、工程技术人员、现场操作人员紧密配合,拟定控制方案,共同解决设计中的重点问题和疑难问题。 2. 保证PLC控制安全可靠 保证PLC控制能够长期安全、可靠、运行,是设计控制的重要原则。这就要求设计者在设计、元器件选择、编程上要考虑,以确保控制安全可靠。例如:应该保证PLC程序不仅在正常条件下运行,而且在非正常情况下(如突然掉电再上电、按钮按错等),也能正常工作。 3. 力求简单、经济、使用及维修方便 一个新的控制工程固然能产品的和数量,带来巨大的经济效益和社会效益,但新工程的投入、技术的培训、设备的也将运行资金的。因此,在控制要求的前提下,一方面要注意不断地扩大工程的效益,另一方面也要注意不断地工程的成本。这就要求设计者不仅应该使控制简单、经济,而且要使控制的使用和方便、成本低,不宜盲目追求自动化和高指标。 4. 适应发展的需要 由于技术的不断发展,控制的要求也将会不断地,设计时要适当考虑到今后控制发展和完善的需要。这就要求在选择PLC、输入/输出模块、I/O点数和内存容量时,要适当留有裕量
http://www.absygs.com

产品推荐