浔之漫智控技术(上海)有限公司
    关于我们
  • 企业文化 组织结构 分支公司 售后服务 技术支持
  • 西门子模块6ES7511-1FK02-0AB0参数详细
  • 西门子模块6ES7511-1FK02-0AB0参数详细
  • 西门子模块6ES7511-1FK02-0AB0参数详细

产品描述

产地德国 品牌西门子

西门子模块6ES7511-1FK02-0AB0参数详细


参数设置

参数集是对驱动装置进行调试和控制的基础,几乎所有的功能都需要对驱动装置的内部参数进行访问、设定和修改。西门子驱动装置的参数功能更为突出,庞大繁多的参数选项,保证了西门子产品的高性能应用和*的定制能力。

驱动装置的调试和控制都依赖于对参数的设置,与 S7-200 SMART配合使用时也不例外。一个实际的项目,往往把驱动装置和自动控制器(PLC)分为两个相对独立、又有联系的子系统,它们的调试也一般也可以分开进行。这样做不但可以提高效率,而且能够保证控制关系清晰明了。

对于 S7-200 SMART与西门子驱动装置配合的项目,我们建议分为三个阶段调试:

驱动装置和 PLC 相对独立,调试各自的基本功能;

调试出驱动装置和 PLC 之间相互控制、反馈功能;

进行整个系统的综合调试,达成一个完整的控制任务。

驱动装置的基本调试相对比较独立,好能够在尝试与控制器连接之前完成。

具体驱动装置的调试请参考相关产品的操作手册等资料。

我们假定已经完成了驱动装置的基本参数设置和调试(如电机参数辨识等等),以下只涉及与 S7-200 SMART控制器通讯相关的参数。

MM 440 的参数分为几个访问级别,以便于过滤不需要查看的部分。 与 S7-200 SMART连接时,需要设置的主要有“控制源"和“设定源"两组参数。要设置此类参数,需要“专家"参数访问级别,即首先需要把 P0003 参数设置为 3

S7-200 PLC结构

S7-200 CPU将一个微处理器、一个集成电源和数字量I/O点集成在一个紧凑的封装中,从而形成了一个功能强大的微型PLC, 在下载了程序之后,S7-200将保留所需的逻辑,用于监控应用程序中的输入输出设备。

①I/O接线端子排;

②输出 LED指示;

③前盖:模式选择开关(RUN/STOP);模拟电位器;扩展端口(适用大部分CPU)

④状态LED:系统错误/诊断(SF/DIAG);RUN(运行);STOP(停止)

⑤可选卡插槽:存储卡;时钟卡;电池卡

⑥通讯口

⑦输入 LED指示

⑧扩展电缆

⑨用于装上标准(DIN)导轨的夹片

电气安装:
变频器必须接地。
为了保证变频器的安全运行,必须由经过认证合格的人员进行安装和调试,这些人员应完全按照本使用说明书中规定的警告进行操作。
要特别注意遵守关于在危险电压设备上工作的常规和地方性安装和安全导则(例如,EN 50178),而且要遵守有关正确使用工具和人身防护装置的规定。禁止在与变频器连接的电缆上使用高压绝缘测试设备。
即使变频器不处于运行状态,其电源输入线、直流回路端子和电动机端子上仍然可能带有危险电压。因此,断开开关以后还必须等待 5 分钟,保证变频器放电完毕,再开始安装工作。
如果卸下了前面的盖板(仅指框架尺寸为 FX和 GX的 MM 440 变频器),风机的叶片便显露出来。当风机正在转动时,存在着造成人身伤害的危险。

电磁干扰(EMI)的防护:
变频器的设计允许它在具有很强电磁干扰的工业环境下运行。通常,如果安装的质量良好,就可以确保安全和*的运行。如果您在运行中遇到问题,请按下面指出的措施进行处理。
确信机柜内的所有设备都已用短而粗的接地电缆可靠地连接到公共的星形接地点或公共的接地母线上。
确信与变频器连接的任何控制设备(例如 PLC)也像变频器一样,用短用粗的接地电缆连接到同一个接地网或星形接地点上。
由电动机返回的接地线直接连接到控制该电动机的变频器的接地端子(PE)上。
优先使用扁平导体,因为它们在高频时阻抗较低。
电缆末端的端接处应尽可能整齐,保证未经屏蔽的线段尽可能短。
控制电缆的布线应尽可能远离供电电源线,使用单独的走线槽;在必须与电源线交叉时,相互应采取 90°直角交叉。
无论何时,与控制回路的连接线都应采用屏蔽电缆。
确信机柜内安装的接触器应是带阻尼的,即是说,在交流接触器的线圈上连接有 R-C 阻尼回路;在直流接触器的线圈上连接有‘续流’二极管。安装压敏电阻对抑制过电压也是有效的。当接触器由变频器的继电器进行控制时,这一点尤其重要。
接到电动机的连接线应采用屏蔽电缆或铠装电缆,并用电缆接线卡子将屏蔽层的两端接地。


命令和频率给定值的选择 P0719:
参数 P0719代表了两个参数 P0700和 P1000功能的组合。可以通过参数变更切换命令源及频率给定值源。同参数 P0700和 P1000相反,对参数 P0719,下级(较低级)的 BICO参数并不更改。该特性通过 PC工具专门用于短暂检索传动系统的控制权限而无需更改现有的 BICO参数设置。参数P0719“命令和频率给定值的选择"包含有命令源(Cmd)和频率给定值(给定值)。

BICO 技术:
利用 BICO 技术(Binector Connector Technology),过程数据可利用“标准"传动参数设置自由地互相连接。在这种情况下,可以自由互连的所有值(如频率给定值、频率实际值、电流实际值等)可以定义为“连接器",而可以自由互连的所有数字信号(如一个数字输入的状态、ON/OFF、一个限幅违法时的信息功能等)可以定义为“开关量连接器"。在一个传动装置中存在很多输入和输出量以及在闭环控制中能够互连的量。利用 BICO技术可以使传动系统适应各种要求。
一个开关量连接器是一个不带任何单位的数字(开关量)信号,它的值只为 0或 1。开关量连接器总是涉及到细分的开关量连接器输入和开关量连接器输出的功能。在这种情况下,总是用一个带“BI"属性的“P"参数作为开关量连接器输入(如:P0731 BI:功能,数字量输入 1),而用一个带“BO"属性的“r"参数代表开关量连接器输出(如:r0751 BO:ADC状态字)。
从上面的例子可以看出,开关量连接器参数在参数名前面有以下缩写:BI 开关量连接器输入,(“P"参数)
→ 通过将开关量连接器输出(BO参数)的参数号作为值输入 BI参数的方式,可以使 BI参数同一个开关量连接器输出作为源互连(如用“BI"参数 P0731同“BO"参数 r0751互连,则 P0731 = 751)。
BO 开关量连接器输出,信号源(“r"参数)
→ BO参数可用作为 BI参数的源。对于实际互连,BO参数号必须输入 BI参数中(如:用“BI"参数 P0731同“BO"参数 r0751互连,则 P0731 = 751)。

模拟量的值被限制在 10 V或 20 mA。折算到相应的参考值上的一个 100%的较大值可被输出/输入,只要 DAC/ADC尚未定标(工厂设定)。
通过串行接口的给定值和实际值信号:
♦ 当传送正使用的 PZD部分,它们被限制为值 7FFF h。这就是较大值折算到参考值为 200%的理由。
♦ 当传送正使用的 PKW部分,它们将传送有关数据类型和单位。
参数 P1082(较大频率)将变频器频率限制在同参考频率无关的值上。当变更 P1082时(工厂设定:50 Hz),P2000也总是要调整的(工厂设定:50 Hz)。如对于一台 NEMA电机,参数设定为 60 Hz并且 P2000也不变更,则模拟给定值/实际值被限定在 100%或 4000 h的给定值/实际值信号被限制为 50 Hz。


、PLC的基本概念
可编程控制器(Programmable Controller)是计算机家族中的一员,是为工业控制应用而设计制造的。早期的可编程控制器称作可编程逻辑控制器(Programmable Logic Controller),简称PLC,它主要用来代替继电器实现逻辑控制。随着技术的发展,这种装置的功能已经大大超过了逻辑控制的范围,因此,今天这种装置称作可编程控制器,简称PC。但是为了避免与个人计算机(Personal Computer)的简称混淆,所以将可编程控制器简称PLC
2、PLC的基本结构
PLC实质是一种于工业控制的计算机,其硬件结构基本上与微型计算机相同,如图所示:
a. *处理单元(CPU)
*处理单元(CPU)是PLC的控制中枢。它按照PLC系统程序赋予的功能接收并存储从编程器键入的用户程序和数据;检查电源、存储器、I/O以及警戒定时器的状态,并能诊断用户程序中的语法错误。当PLC投入运行时,首先它以扫描的方式接收现场各输入装置的状态和数据,并分别存入I/O映象区,然后从用户程序存储器中逐条读取用户程序,经过命令解释后按指令的规定执行逻辑或算数运算的结果送入I/O映象区或数据寄存器内。等所有的用户程序执行完毕之后,后将I/O映象区的各输出状态或输出寄存器内的数据传送到相应的输出装置,如此循环运行,直到停止运行。
为了进一步提高PLC的可*性,近年来对大型PLC还采用双CPU构成冗余系统,或采用三CPU的表决式系统。这样,即使某个CPU出现故障,整个系统仍能正常运行。
b、存储器
存放系统软件的存储器称为系统程序存储器。
存放应用软件的存储器称为用户程序存储器。
C、电源
PLC的电源在整个系统中起着十分重要得作用。如果没有一个良好的、可*得电源系统是无法正常工作的,因此PLC的制造商对电源的设计和制造也十分重视。一般交流电压波动在+10%(+15%)范围内,可以不采取其它措施而将PLC直接连接到交流电网上去。
3、PLC的工作原理
一. 扫描技术
当PLC投入运行后,其工作过程一般分为三个阶段,即输入采样、用户程序执行和输出刷新三个阶段。完成上述三个阶段称作一个扫描周期。在整个运行期间,PLC的CPU以一定的扫描速度重复执行上述三个阶段。
(一) 输入采样阶段
在输入采样阶段,PLC以扫描方式依次地读入所有输入状态和数据,并将它们存入I/O映象区中的相应得单元内。输入采样结束后,转入用户程序执行和输出刷新阶段。在这两个阶段中,即使输入状态和数据发生变化,I/O映象区中的相应单元的状态和数据也不会改变。因此,如果输入是脉冲信号,则该脉冲信号的宽度必须大于一个扫描周期,才能保证在任何情况下,该输入均能被读入。
(二) 用户程序执行阶段
在用户程序执行阶段,PLC总是按由上而下的顺序依次地扫描用户程序(梯形图)。在扫描每一条梯形图时,又总是先扫描梯形图左边的由各触点构成的控制线路,并按先左后右、先上后下的顺序对由触点构成的控制线路进行逻辑运算,然后根据逻辑运算的结果,刷新该逻辑线圈在系统RAM存储区中对应位的状态;或者刷新该输出线圈在I/O映象区中对应位的状态;或者确定是否要执行该梯形图所规定的特殊功能指令。
即,在用户程序执行过程中,只有输入点在I/O映象区内的状态和数据不会发生变化,而其他输出点和软设备在I/O映象区或系统RAM存储区内的状态和数据都有可能发生变化,而且排在上面的梯形图,其程序执行结果会对排在下面的凡是用到这些线圈或数据的梯形图起作用;相反,排在下面的梯形图,其被刷新的逻辑线圈的状态或数据只能到下一个扫描周期才能对排在其上面的程序起作用。
(三) 输出刷新阶段
当扫描用户程序结束后,PLC就进入输出刷新阶段。在此期间,CPU按照I/O映象区内对应的状态和数据刷新所有的输出锁存电路,再经输出电路驱动相应的外设。这时,才是PLC的真正输出。
比较下二个程序的异同:
程序1:
程序2:
这两段程序执行的结果完全一样,但在PLC中执行的过程却不一样。
※ 程序1只用一次扫描周期,就可完成对%M4的刷新;
※ 程序2要用四次扫描周期,才能完成对%M4的刷新。
这两个例子说明:同样的若干条梯形图,其排列次序不同,执行的结果也不同。另外,也可以看到:采用扫描用户程序的运行结果与继电器控制装置的硬逻辑并行运行的结果有所区别。当然,如果扫描周期所占用的时间对整个运行来说可以忽略,那么二者之间就没有什么区别了。
一般来说,PLC的扫描周期包括自诊断、通讯等,如下图所示,即一个扫描周期等于自诊断、通讯、输入采样、用户程序执行、输出刷新等所有时间的总和。
二. PLC的I/O响应时间
为了增强PLC的抗干扰能力,提高其可*性,PLC的每个开关量输入端都采用光电隔离等技术。
为了能实现继电器控制线路的硬逻辑并行控制,PLC采用了不同于一般微型计算机的运行方式(扫描技术)。
以上两个主要原因,使得PLC得I/O响应比一般微型计算机构成的工业控制系统满的多,其响应时间至少等于一个扫描周期,一般均大于一个扫描周期甚至更长。
所谓I/O响应时间指从PLC的某一输入信号变化开始到系统有关输出端信号的改变所需的时间。其短的I/O响应时间与长的I/O响应时间如图所示:
第(n-1)个
扫描周期
短I/O响应时间:
长I/O响应时间
SIEMENS PLC在中国的产品,根据规模和性能的大小,主要有 S7-200 S7-300 和S7-400三种,下面就简单介绍一下该三种产品的一些特性。
S7-200
针对低性能要求的摸块化小控制系统,它多可有7个模块的扩展能力,在模块中集成背板总线,它的网络联接有RS-485通讯接口和Profibus两种,可通过编程器PG访问所有模块,带有电源、CPU和I/O的一体化单元设备。
其中的扩展模块(EM)有以下几种:数字量输入模块(DI)——24VDC 和 120/230VAC;数字量输出(DO)——24VDC 和 继电器;模拟量输入模块(AI)——电压、电流、电阻和热电偶;模拟量输出模块——电压和电流。  还有一个比较特殊的模块-通讯处理器(CP)——该块的功能是可以把S7-200作为主站连接到AS-接口(传感器和执行器接口),通过AS-接口的从站可以控制多达248个设备,这样就可以显著的扩展S7-200的输入和输出点数



http://www.absygs.com

产品推荐