产品描述
6ES7223-1BH22-0XA8详细说明
在使用和调试伺服系统的过程中,会时不时的出现各种意想不到的干扰,尤其是对于发脉冲的的应用,下面从几个方面分析下干扰的类型和产生的途径,这样就会做到有针对性地抗干扰的目的,希望共同学习研究,谢谢~
1.来自空间的--辐射干扰
对辐射干扰*为有效的措施就是金属屏蔽。空间辐射电磁场主要是由网络、雷电、无线电广播和雷达等产生的,通常称为辐射干扰。其影响主要通过两条路径:一是直接对伺服内部的辐射,由电路感应产生干扰; 二是对伺服通信网络的辐射,由通信线路感应产生干扰。此种干扰发生几率比较少,一般通过设置屏蔽电缆进行保护。
2.来自系统配线—传导干扰
对传导干扰的有效措施就是采用滤波器、隔离电源、屏蔽电缆、以及合理和可靠的接地来解决问题。
传导干扰主要有下面三类:
第一类是来自电源的干扰。实践证明,因电源引入的干扰造成伺服控制系统故障的情况很多,一般通过加稳压器、隔离变压器等设备解决。
第二类是来自信号线引入的干扰。此类干扰主要有两种信息途径:一是通过变送器供电电源或共用信号仪表的供电电源串入的电网干扰,这往往被忽视; 二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这种干扰往往非常严重。由信号引入的干扰会引起电路板元件工作异常,严重时将引起损伤。对于隔离性能差的系统,还将导致信号间互相干扰,引起共地系统总线回流,造成逻辑数据变化、误动和死机。控制系统因信号引入干扰造成内部元器件损坏,由此引起系统故障的情况也很多。此种干扰经常发生于信号距离长的应用案例上,常采用加中继隔离的方法,来屏蔽掉感应电压,解决干扰问题。
第三类是来自接地系统混乱的干扰。众所周知接的是提高设备抗干扰的有效手段之一,正确的接地既能抑制设备向外发出干扰; 但是错误的接地反而会引入严重的干扰信号,使系统无法正常工作。一般说来,控制系统的地线包括系统地、屏蔽地、交流地和保护地等,如果接地系统混乱,对伺服系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。例如电缆屏蔽层两端a、b都接地,就存在地电位差,有电流流过屏蔽层。当发生异常状态如雷电击时,地线电流将更大。此外,屏蔽层、接地线和大地可能构成闭合环路,在变化磁场的作用下,屏蔽层内会出现感应电流,干扰信号回路。若系统地与其它接地处理混乱,所产生地地环流就可能在地线上产生不等电位分布,影响伺服电路的正常工作。解决此类干扰的关键就在于分清接地方式,为系统提供良好的接地性能。
3.来自系统内部的干扰
主要由系统内部元器件及电路间的相互电磁辐射产生,如逻辑电路相互辐射、模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。
实际现场的工况条件要复杂的多,只能是具体问题具体分析,但是*终都会有一个圆满的解法,只不过是过程经历不同罢了
① 首先确认控制器实际发出的脉冲当前值是否和预想的一致,如不一致则检查并修正程序;
② 监视伺服驱动器接收到的脉冲指令个数是否和控制器发出的一致,如不一致则检查控制线电缆;
③ 检查伺服指令脉冲模式的设置是否和控制器设置得一致,如cw/ccw 还是脉冲+方向;
④ 伺服增益设置太大,尝试重新用手动或自动方式调整伺服增益;
⑤在进行往复运动时易产生累积误差,建议在工艺允许的条件下设置一个机械原点信号,在误差超出允许范围之前进行原点搜索操作;
⑥ 机械系统本身精度不高或传动机构有异常(如伺服电机和设备系统间的联轴器部发生偏移等)。
什么情况下使用减速? 步进电机切换定子相电流的频率,如改进步进电机驱动电路的输入脉冲,使其变成低速运动。低速步进电机在等待步进指令时,转子处于停止状态,在低速步进时,速度波动会很大,此时如改为高速运行,就能解决速度波动问题,但转矩又会不足。
即低速会转矩波动,而高速又会转矩不足。在三相混合式步进电机得到广泛应用以前,会有需要步进电机低速运行的设备厂商仅仅为了低速平稳而使用减速步进电机。随着步进电机驱动器细分技术的成熟和三相混合式步进电机良好的低速平稳性,现在已经不再需要为了低速运行而使用减速步进电机了。
变频电机如何调速
在很多应用场合由于安装空间或成本的限制无法使用大功率步进电机 步进电机的输出轴采用直驱负载的方式,当负载惯量很大时,会出现加速转矩不足的现象,这个问题使用减速步进电机就可以迎刃而解。 希望低速大转矩制动器的情况。 以上情形应考虑使用减速器。步进电机使用的减速器,要求齿隙小、耐冲击、齿面强度高。
因体积精巧、价格低廉、运行稳定等优点在各大中得到广泛应用。虽然步进电机已被广泛地应用,但是步进电机运动控制实现全闭环控制仍是行业的一大难题。
问题主要体现是原点的不确定性和失步现象。目前,采用高速光电开关作为步进系统的原点,这个误差在毫米级,所以在精确控制领域,是不能接受的。另外,为了提高运行精度,步进电机系统的驱动采用多细分,有的大于16,如用在往复运动过程中,误差大的惊人。已经不能适应加工领域。
为此,提出步进电机全闭环控制系统,以适应目前运动控制领域的需求。
1、 硬件连接
硬件连接加装编码器,根据细分要求,采用不同等级的解析度编码器进行实时反馈。
2、 原点控制
根据编码器的z信号,识别、计算坐标原点,同数控系统相同,精度可以达到2/编码器解析度×4。
3、 失步控制
根据编码器的反馈数据,实时调整输出脉冲,根据失步调整程度,采取相应办法。
4、 电路原理描述
电路采用超大规模电路fpga,输入、输出可以达到兆级的相应频率,3.3v,利用2596,将24v转为3.3v,方便实用。输入脉冲与反馈脉冲进行4倍频正交解码后计算,及时修正输出脉冲量和频率。
5、 应用描述
本电路有两种模式,返回原点模式和运行模式。当原点使能开关置位时,进入原点模式,反之,进入运行模式。
在原点模式,以同步于输入脉冲的频率输出脉冲,当碰到原点开关后,降低输出脉冲频率,根据编码器的z信号,识别、计算坐标原点。返回原点完成后,输出信号。此信号及其数据在不断电的情况下,永远保持。
在运行模式,以同步于输入脉冲的频率输出脉冲,同时计算反馈数据,如出现误差,及时修正。另外,大惯量运行时,加减速设置不合理的情况下,可能会及时反向修正。
6、 技术指标
(1)输入输出相应频率:≤1m;
(2)脉冲同步时间误差:≤10ms;(主要延误在反向修正,不考虑反向修正,≤10us)
(3)重定位精度: ≥2/编码器解析度×4/马达解析度×细分)
(4)重定位原点电气精度≥2/编码器解析度×4/马达解析度×细分)
(5)适应pnp,npn接口
(6)适应伺服脉冲控制
(7)适应各种编码其接口
步进电机运动控制一旦解决上述问题,增加数百元成本的情况下可以实现全闭环控制,毫不逊色于系统。特别是其价格低廉、控制简单、寿命长久的特点在某些场合,可能优于伺服系统。
产品推荐