产品描述
西门子模块6ES7231-7PB22-0XA8安装调试
一、国内青霉素的前期生产工艺现状
目前在国内青霉素的生产中,大多数厂家的前期生产工艺发酵罐采用传统的恒定。这种搅拌器的转速是根据产生菌种特性与参照产生菌在不同生长代谢阶段的摄氧要求的*高转速设定的,为恒定转速发酵工艺奠定了基础。本文针对国内青霉素生产中存在的这一典型课题,讨论艾默生变频器在这一领域应用的实施情况。
二、发酵罐搅拌器的转速与青霉素产生菌生长代谢的关系
1、搅拌器
青霉素生产发酵工艺是产生菌在适合的培养性、PH值、温度、通气和搅拌等条件下进行生长与合成青霉素的代谢活动。发酵工艺的持续时间与发酵液内氧的传递能力、营养物质的消耗程度、有毒性和有抑制性化合物的形成及菌种的物质特性有关。其中通气和搅拌功能是对产生菌提供生长代谢活动的氧源,而搅拌器的功能则是在发酵液通气的条件下,将空气打碎成小气泡,使其均匀分布在发酵液的各个角落,增加气液接触的有效面积,使发酵液随搅拌叶转动形成涡流并提高其湍动程度,减少菌丝因缺氧而产生结团现象,使氧的传递面积增大,延长氧在发酵液中的停留时间,达到增加青霉素产量的目的。
2、搅拌器转速对青霉素发酵工艺的影响
发酵罐的罐压维持微正状态虽然可以避免负压时造成的染菌和延长氧在发酵液中的停留时间,但是还应当考虑到,如将罐压从微正状态提高时,既不利于产生菌代谢时废气的排除与氧在发酵液内的传递,又增加了设备的负载,同时提高了有害气体的溶解度。在这种情况下,如果单一考虑增大空气来提高供氧浓度,将会加快发酵液水分蒸发,随之也会带走更多的挥发性有机酸等其他的中间产物,对产生菌的代谢十分有利。同时,发酵液的黏度也会上升,还会影响液体的湍动程度和氧从气相传递到发酵液中的液膜阻力,使氧的传递阻力增大。此外,发酵液粘度较大时,泡沫将剧增而稳定,且不易破裂,使气液接触的总面积降低。因此,为了过多的泡沫就要耗用大量的消沫剂。但是,消沫剂用量过多时,不但不能泡沫,反而引起泡沫调节失控,PH值波动,*终导致异常发酵,造成不可挽回的青霉素生产工艺损失。由于空气在发酵液中滞留的时间有限,对溶氧浓度的影响也将远小于搅拌器转速的影响。由此可见,在青霉素发酵工艺中,并不提倡一味地增大空气,而应当调整搅拌器的转速,以便满足不同产生菌及其在不同生长代谢阶段对溶氧的需求。但是,如果搅拌器的转高,不仅溶氧浓度趋向饱和,并且浪费能源,还容易损伤菌体形态和产生过多的泡沫。
三、艾默生变频器在青霉素生产中的应用
根据青霉素的不同产生菌与不同生长代谢阶段对摄氧量的不同要求及搅拌器转速对溶氧浓度占据的主导地位,对青霉素发酵罐的传统搅拌器进行调速技术改造非常必要。通过改造工程,使青霉素发酵工艺中搅拌器转速、通气量、溶氧浓度和罐压等工艺参数有机结合,促使产生菌的生长代谢条件达到*佳状态。我们采用艾默生变频器TD2000系列对发酵罐的恒速搅拌器进行技术改造,经数月运行考验,证实其情况十分良好。
1)由于青霉素发酵罐的搅拌器转速得以有效地控制与调整,因此成功地改善了生产工艺条件,使青霉素产出的发酵单位提高了16.70%。
2)在青霉素发酵 工艺周期内,适度地降低了搅拌器转速,有效地遏制了发酵液泡沫剧烈地生成,减少了染菌事故率,每批罐的消沫剂用量减少了26%左右。
3)试验数据证实,当发酵罐搅拌器的转速下调10%~20%时,用电量分别减少25%至45%,节电效果十分显著。随着搅拌器负荷的增大,其节电率略有上升。通常,在满足青霉素产生菌不同生长代谢阶段对摄氧浓度需求的情况下,搅拌器转速均有下调的余地。
4)由于艾默生变频器采用电压/频率协调控制电动机的软启动工作方式,并且具有转矩补偿和提升功能,因此避免了电动机全压启动时,电流对电网、电气设备与机械设备的冲击,有效地延长了电气系统设备和机械设备的大修期和使用寿命。
四、结论
从青霉素生产发酵罐搅拌器的调速改造实施情况总体来看,工程具有投资费用少、施工、工艺操作人员易于接受等特点,不仅在本厂具有推广价值,而且对于其他有关制药厂也具有借鉴作用
利用EC20-8AD采集了总管压力、旁通阀位置反馈、1#机组出口压力、2#机组出口压力、1#泵出口流量、2#泵出口流量;用EC20-4DA输出电流信号给定EV2000-4T2000P频率,另一路输出4~20mA的电流信号到旁通阀。
超级压光机的变频控制
2.1开环的张力控制方案
超级压光机在快速启停及中间连续调程中必须保证纸页的张力恒定,否则收取的纸页就会卷曲、折页甚至断裂,严重影响产品的质量和产量。本系统中利用变频器的组合来达到精确的张力控制,我们知道一般情况下可以通过两种方式可以满足这样的要求:一是通过控制电机的速度来实现,二是通过控制电机的转矩来实现。由于考虑到安装张力传感器的成本和条件,故采用开环的张力控制来实现。当然在这种控制方式下,从而降低了系统的成本和难度。
由设定的张力和卷筒的卷径可以计算出变频器的转矩指令,其公式如下:
T=(F X D) / (2 X i )
其中:T 为变频器的输出转矩指令;F为张力设定指令;D为卷筒的卷径;i为机械传动比。
本方案必须考虑到线速度信号、卷径计算和张力锥度控制,这样才能准确地控制电机的转矩输出,保持张力的恒定。
2.2超级压光机的变频组构
超级压光机的主传动功率的计算可以根据以下:
P = K x B x V x N
其中:P为电动机功率(KW);K为常系数,一般取0.015~0.026;B为幅宽;V为工作车速(M/min);N为辊数(根)。
以四川某造纸厂为例,采用十二辊超级压光机,收卷的纸张宽1M,厚10um,设计车速为250米/分。则选用的主牵引电机(变频器)功率为:P = 0.018 X 1 X 250 X 12 = 54KW,因此可以选用55KW的变频器。本系统采用高性能的矢量变频器TD3000,配置如下:主牵引变频器:
TD3000-4T0550G、收卷变频器: TD3300-4T0055G。另外收卷电机采用变频电机,并加装旋转2.3变频调速控制描述
本系统用TD3000矢量开环控制来驱动主传动电机,收卷变频器TD3300采用开环张力控制模式。主牵引的速度给定从AI1输入,控制精度达1%~0.5%。TD3300采用前级主牵引变频器TD3000的模拟输出口AO2(输出TD3000变频器的运行频率)来得到线速度,并进行卷径计算;张力设定信号由AI1获取;旋转编码器的信号分别接到PGP/COM/A-/B-口。
3、超级压光机收卷变频器的调试步骤
3.1 初步检查变频器、电机、旋转编码器的接线及铭牌参数。
电机铭牌:额定功率5.5kw,额定电压380V,额定频率50Hz,额定电流11.6A,额定转速1440RPM。
旋转编码器:欧姆龙1024线输出,供电电压24VDC,A\B\Z开路集电极输出。
3.2 完成变频器电机参数自辨识
重点检查变频器辨识出的电机的空载电流,电机空载电流正常应在电机额定电流的30%~50%范围内。TD3300变频器实际辨识出电机的空载电流为4.9A,是电机额定电流的42%,在正常范围之内。
3.3 初步测试变频器对电机的驱动能力
TD3000变频器设置为开环矢量控制模式,TD3300设置为闭环矢量控制模式,TD3300变频器应在(FB编码器功能项)设置编码器的参数(FB.00=1024),在键盘控制模式测试变频器对电机的驱动能力,重点观测变频器的输出频率的稳定性和输出电流的大小,特别关注TD3300变频器的输出电流,若在空载的情况下,输出电流偏大并且报过流故障,应该是旋转编码器的A\B相接线有误,更换A\B相接线或更改变频器内PG接线的方向设定(功能码FB.01)。
3.4 完成TD3000和TD3300的信号接口测试
完成TD3000变频器模拟输出口AO2(F6.07=1)和TD3300变频器模拟输入口AI2(F6.01=0,F6.04=1.0)的相关参数设置,检查TD3300变频器接口板AI2上V/I端口的跳线在I侧,并校正TD3000模拟输出口AO2的输出和对应的TD3300模拟输入口AI2的线性度(临时修改TD3000变频器AO2口(F6.07=0)为设定频率输出,设定F3.03=0,通过修改F3.04的值可改变AO2口的输出值。利用TD3300键盘停机时可显示AI2的输入电压值-设定FD.02=1024,在TD3000和TD3300上电不运行的情况下,修改TD3000变频器F6.10-AO2零偏调整和F6.11-AO2增益设定,可完成其线性度的校正)。
3.5 设置TD3000和TD3300变频器的其他相关运行参数,初步带载试运行。
F3.06=3,开环张力控制模式;
F1.00=2.81,设备厂家提供的收卷电机与收卷卷轴的转速比;
F5.03(多功能端子X3)=12,卷径复位1指令;
F8.00=0,收卷模式;
F8.01=1,AI1设定;
F8.03=1000,根据现场调试情况修改,满足张力设定电位器的调整要求;
F8.08=0,初步设定卷径不计算,保证初步测试时张力的稳定;
F8.09=500,设备厂家提供,建议比厂家提供的数值稍大一些;
F8.10=170,设备厂家提供,空芯卷轴的直径;
F8.12=170,卷径复位用,与F5.03(多功能端子X3)=12,卷径复位1指令配合使用;
F8.16=170,TD3300变频器初步启动时计算变频器输出转矩用;
F8.17=0,正向,由于收卷电机处于电动状态,力矩输出应与转速方向一致,即正向。
参数设置后设备运行较好,客户反映随着卷径的增加,张力越来越小,这是卷径未计算的结果。
3.6 加卷径计算功能,再次带载运行
F8.08=1,设定卷径来源选择线速度计算法;
FC.00=2,AI2设定,来自主牵引变频器TD3000的AO2(运行频率)口的输出。
FC.03=250m/min,设备厂家提供,FC.00*FC.03=当前线速度V,变频器根据公式:D=(i*V)/(л*n) 计算当前卷径;
FC.04=80 m/min,防止TD3300变频器在速度较低时卷径计算不准导致变频器输出力矩的波动;当TD3300变频器运行的线速度低于FC.04设定值时,卷径计算功能停止,保持当前卷径值;当TD3300变频器运行的线速度大于FC.04设定值时,卷径计算功能重新使能。
再次带载测试,收卷过程张力平稳,达到要求。但客户反映TD3300刚启动时力矩突加较猛,纸张容易拉断,修改F3.12功能项,使TD3300变频器启动时转矩斜坡方式产生,减缓启动时的力矩突变,至此完全满足客户的工艺要求。
(注:此系统由于设备惯量较小,全过程张力恒定,未使用惯量补功能偿和张力锥度控制功能)
4、结束语
本系统采用TD3000+TD3300的变频收卷方案后,现场配置简洁,工作稳定,调试方便。实际的收卷效果非常理想,端面整齐,张力稳定。正是基于变频器TD3300的张力控制特点,加上其完善的功能、高可靠性和优秀的性能价格比,满足了用户对于纺织、造纸、冶金等各个领域的不同要求。
产品推荐