产品描述
6ES7223-1BL22-0XA8型号介绍
一般交流伺服有两种复位功能,外部触发复位和参数初始化复位。外部触发复位一般为伺服报警,避免伺服断电重启,此复位功能只能部分报警,如伺服过载;还有部分报警是必须断电重启的,如编码器故障。参数初始化复位为在参数调乱或调不到理想效果时整个伺服系统复位为出厂值,对于2手产品*好执行一次此功能。以台达b2系列伺服为例,说说这两个复位功能。
台达b2系列伺服的cn1接口33脚为默认复位功能,也可以通过参数设置设置为其他针脚,当此针脚和com-即14针脚接通时,伺服执行一次复位,可以清楚伺服过载报警。参数p2-08为特殊参数写入,当设置为10时系统可以初始化,初始化之后断电重启才能生效。
其他伺服也有相同功能,详情可查阅相应手册。
1、的闭环控制*早是采用编码器的形式。
初始状态,系统受一相或几相激磁而静止,开始工作后,先把目标位置送入减法计数器,然后,“起动”脉冲信号加到控制单元上,控制单元在“起动”脉冲的作用下,立即把步进命令送入相序发生器,使激磁变化一次,后续的脉冲则由编码器装置产生。
编码器每产生一个脉冲,就对法计数器减1,因而,减法计数器记录的是实际的转子位置。当减法计数器的计数减至零时,发出一个停止信号到控制单元,禁止以后的步进命令,系统停止工作。对于低分辨率的步进电机,通常使用一个开了槽的圆盘和光电作为反馈编码器的组合件,槽口的数目等于电机每转所走的步数;对于高分辨率的步进电机,则需采用高分辨率的增量编码器,如旋转变压器增量编码器,感应同步器增量编码器等。
由于反馈编码器价格昂贵,而且为了把编码器安放到步进电机的轴上,要求系统具有更大的体积,这两大缺陷限制了编码器形式的步进电机闭环控制系统的应用。
2、波形检测形式的步进电机闭环控制系统
波形检测形式的步进电机闭环控制系统的原理是通过对步进电机相电流或绕组反电势(或绕组反电势所引起的电流)的,间接得到转子位置信息,反馈到控制单元产生控制脉冲,控制步进电机运动。波形检测器是由简单的线路构成,价格便宜,如果需要,可直接安装在控制器逻辑线路中,步进电机不需附加的机械连接。
3、利用电流检测的步进电机闭环控制系统
用电流检测的步进电机闭环控制是基于某些反应式步进电机的相电流在一定速率范围内出现正的或负的极值这一概念进行的。对系统加初始起动脉冲,电机起动,当相电流出现极值的瞬间,波峰检测线路瞬时产生一个脉冲或者定时信号,反馈给控制单元,作为后续脉冲,实现了步进电机的闭环控制。
值得注意的是,电机导通相电流和截止相电流均可能出现若干个波峰,应在哪一种状态下进行检测,可根据电机的实际运行确定,电流检测可通过在电流回路中插入一个已知阻值的小电阻,测量电流通过时的电压实现,波峰检测线路一般均采用模拟微分法,波峰用di/dt经过零值表示。
伺服的三种控制方式, 一般伺服都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式 。我想知道的就是这三种控制方式具体根据什么来选择的?我是做数控的,一般都是采用的速度控制方式,这个好象是nc中的轴控制卡决定的。还有我就是想知道这三种控制方式有没有性能上的差别?分别都使用在什么场合?
答:速度控制和转矩控制都是用模拟量来控制的。位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求,满足何种运动功能来选择。
如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。
如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。
就伺服驱动器的响应速度来看,转矩模式运算量*小,驱动器对控制信号的响应*快;位置模式运算量*大,驱动器对控制信号的响应*慢。
对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用。
一般说驱动器控制的好不好,每个厂家的都说自己做的*好,但是现在有个比较直观的比较方式,叫响应带宽。当转矩控制或者速度控制时,通过脉冲发生器给他一个方波信号,使电机不断的正转、反转,不断的调高频率,上显示的是个扫频信号,当包络线的顶点到达*高值的70.7%时,表示已经失步,此时的频率的高低,就能显示出谁的产品牛了,一般的电流环能作到1000hz 以上,而速度环只能作到几十赫兹。
换一种比较专业的说法:
1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10v对应5nm的话,当外部模拟量设定为5v时电机轴输出为2.5nm:如果电机轴负载低于2.5nm时电机正转,外部负载等于2.5nm时电机不转,大于2.5nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。
应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。
2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。
应用领域如、印刷机械等等。
3、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环pid控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环位置信号,此时的电机轴端的编码器只电机转速,位置信号就由直接的*终负载端的装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。
4、谈谈3环,伺服一般为三个环控制,所谓三环就是3个闭环负反馈pid调节系统。*内的pid环就是电流环,此环完全在伺服驱动器内部进行,通过霍尔装置检测驱动器给电机的各相的输出电流,负反馈给电流的设定进行pid调节,从而达到输出电流尽量接近等于设定电流,电流环就是控制电机转矩的,所以在转矩模式下驱动器的运算*小,动态响应*快。
第2环是速度环,通过的电机编码器的信号来进行负反馈pid调节,它的环内pid输出直接就是电流环的设定,所以速度环控制时就包含了速度环和电流环,换句话说任何模式都必须使用电流环,电流环是控制的根本,在速度和位置控制的同时系统实际也在进行电流(转矩)的控制以达到对速度和位置的相应控制。
第3环是位置环,它是*外环,可以在驱动器和电机编码器间构建也可以在外部控制器和电机编码器或*终负载间构建,要根据实际情况来定。由于位置控制环内部输出就是速度环的设定,位置控制模式下系统进行了所有3个环的运算,此时的系统运算量*大,动态响应速度也*慢。
控制器与驱动器有什么不同作用,下面论坛小编给各位介绍一下:
步进电机控制器是一种能够发出平均脉冲信号的产品,它发出的信号进入步进电机驱动器后,会由驱动器转换成步进电机所需要的强电流信号,带动步进电机运转。
步进电机在控制系统中具有广泛的应用。它可以把脉冲信号转换成角位移,并且可用作电磁制动轮、电磁差分器、或角位移发生器等。驱动器说接收的是脉冲信号,每收到一个脉冲,步进电机控制器会带动电机转过一个固定的角度,这由于这个特点,步进电机才会被广泛的应用到现在的各个行业里。
步进电机驱动器是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速和定位的目的。步进电机驱动器的原理,采用单极性直流供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。
伺服电机工作原理
1、伺服系统(servomechanism)是使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。直流伺服电机分为有刷和无刷电机。有刷电机,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护不方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。
无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。控制复杂,容易实现智能化,其换相方式灵活,可以方波换相或正弦波换相。电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。
2、交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。大惯量,*高转动速度低,且随着功率增大而快速降低。因而适合做低速平稳运行的应用。
3、伺服电机内部的转子是永磁铁,驱动器控制的u/v/w三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。
交流伺服电机和无刷直流伺服电机在功能上的区别:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。
产品推荐