产品描述
西门子模块6ES7231-7PC22-0XA0现货供应
新的应用设备提供供电的能力。
1.2 什么是PoE以太网供电PoE (Power Over Ethernet) 以太网供电这项创新的技术,指的是现有的以太网CAT-5布线基础架构在不用作任何改动的情况下就能保证在为如IP电话机、无线局域网接入点AP、安全网络摄像机以及其他一些基于IP的终端传输数据信号的同时,还能为此类设备提供直流供电的能力。PoE技术用一条通用以太网电缆同时传输以太网信号和直流电源,将电源和数据集成在同一有线系统当中,在确保现有结构化布线安全的同时保了现有网络的正常运作。
大部分情况下,PoE的供电端输出端口在非屏蔽的双绞线上输出44~57V的直流电压、350~400mA 的直流电流,为一般功耗在15.4W以下的设备提供以太网供电。典型情况下,一个IP电话机的功耗约为3~5W,一个无线局域网访问接入点AP的功耗约为6~12W,一个网络安全摄像机设备的功耗约为10~12W。
1.3 PoE以太网供电的好处PoE以太网供电为用户带来的好处是显而易见的,将在未来几年内受到用户的大力欢迎。
它节约成本。因为它只需要安装和支持一条而不是两条电缆。一个AC电源接口的价格大约为100~300美元,许多带电设备,例如视频监视摄像机等,都需要安装在难以部署AC电源的地方。随着与以太网相连的设备的增加,如果无需为数百或数千台设备提供本地电源,将大大降低部署成本,并简化其可管理性。
它易于安装和管理。客户能够自动、安全地在网络上混用原有设备和PoE设备,能够与现有以太网电缆共存。
它安全。因为PoE供电端设备只会为需要供电的设备供电。只有连接了需要供电的设备,以太网电缆才会有电压存在,因而了线路上漏电的风险。
它得于网络设备的管理。因为当远端设备与网络相连后,将能够远程控制、重配或重设。
更多增强的应用。随着IEEE 802.3af标准的确立,其他大量的应用也将快速涌现出来,包括蓝牙接入点、灯光工作、网络打印机、IP电话机、Web摄像机、无线网桥、门禁读卡机与监测系统等。用户在当前的以太网设备上融合新的供电装置,就可以在现有的网线上提供48v直流电源,降低了网络建设的总成本,并且保护了投资。
2.1 PoE以太网供电技术2.1.1 PoE以太网供电系统介绍一个完整的PoE系统包括供电端设备(Power Source Equipment,PSE)和受电端设备(Powered Device,PD)两部分,两者基于IEEE802.3af标准建立有关受电端设备PD的连接情况、设备类型、功耗级别等方面的信息联系,并以此为根据控制供电端设备PSE通过以太网向受电端设备PD供电。
供电端设备PSE可以是一个 Endspan (已经内置了PoE功能的以太网供电交换机)和 Midspan (用于传统以太网交换机和受电端设备PD之间的具PoE功能的设备)两种类型,而受电端设备PD则是如一些具PoE功能的无线局域网AP、IP电话机等终端设备。
操作电压一般情况下为 48 Vdc,但其也许可能在 44 Vdc 和 57Vdc之间,但无论如何是不能超过60Vdc的。
由PSE产生的*大电流一般情况下在 350mA 到 400mA 之间变化。这将确保以太网电缆不会由于其本身的阻抗而导致过热。
上述两个值使得PSE在其端口输出会产生*小15.4W 的功率输出,考虑到经过以太网电缆后的损耗,受电端设备PD所能接受到的*大的功率为 12.95W。
2.1.2 PoE以太网供电的线对选择根据IEEE 802.3af的规范,有两种方式选择以太网双绞线的线对来供电,分别称为选择方案A与选择方案B。
方案A是在传输数据所用的电缆对((1/2 & 3/6)之上同时传输直流电,其信号频率与以太网数据信号频率不同以确保在同对电缆上能够同时传输直流电与数据。方案B使用局域网电缆中没有被使用的线对(4/5 & 7/8)来传输直流电,因为在以太网中,只使用了电缆中四对线中的两对来传输数据,因此可以用另外两对来传输直流电。
现在 Endspan (已经内置了PoE功能的以太网供电交换机)解决方案产品如NETGEAR公司的产品 FSM7326P 采用方案A也就是采用在传输数据所用的电缆对((1/2 & 3/6)之上同时传输直流电,这样就确保交换机端口同时允许千兆以太网(Gigabit Ethernet)和以太网供电(PoE)共存,可提供10/100/1000Mbps三种速度的连接,并且Endspan在信号传输上对质量更有保证。
2.2 PoE系统以太网供电工作过程供电端设备PSE是整个POE以太网供电过程的管理者。当在一个网络当中布置PSE供电端设备时,PoE以太网供电工作过程如下:
1. 检测过程。刚开始的时候,PSE设备在端口只是输出很小的电压,直到其检测到其线缆的终端连接为一个支持IEEE 802.3af 标准的受电端设备。
2. PD端设备分类。当检测到受电端设备PD之后,供电端设备PSE可能会为PD设备进行分类,并且评估此PD设备所需的功率损耗。
3. 开始供电。在一个可配置的时间(一般小于15微秒)的启动期内,PSE设备开始从低电压开始向PD设备供电,直至提供到 48Vdc 级的直流电源。
4. 供电。为PD设备提供稳定可靠的48Vdc 级直流电,满足PD设备不越过15.4W的功率消耗。
5. 断电。如果PD设备被物理或者电子上从网络上去掉,PSE就会快速地(一般在300 – 400 ms的时间之内)停止为PD设备供电,并且又开始检测过程检测线缆的终端是否连接PD设备
在整个过程当中,一些事情如PD设备功率消耗过载、短路、超过PSE的供电负荷等会造成整个过程在中间会中断,又会从第一步检测过程开始。
2.3 PoE供电端设备电源管理如果一个24端口的Endspan 交换机在每个端口都提供 15.4W的电源输出的话,整个交换机则要求提供高达370W的功率输出!这会导致整个交换机要处理过热的问题。而在一个企业的典型应用当中,可能需要连接20个 IP电话(一般每个为4-5Watts),连接2个无线局域网接入点AP(一般每个约为 8-10Watts),连接 2个网络摄像机(一般每个约为10-13Watts),总计需要约146Watts。考虑到成本因素及其他,因此一般的Endn以太网供电交换机的输出功率都设计在150Watts到200Watts之间,如NETGEAR公司三层以太网供电交换机FSM7326P就能提供170Watts的直流电输出。另外也可以根据各种情况对各个不同端口的输出直流电进行各种各样的管理以满足用户的不同需要。
系统的主要技术概述:
◆系统主要有现场控制站(I/O站)、数据通讯系统、人机接口单元(操作员站OPS、工程师ENS)、机柜、电源等组成。系统具备开放的体系结构,可以提供多层开放数据接口。
◆硬件系统在恶劣的工业现场具有高度的可靠性、维修方便、工艺先进。底层汉化的软件平台具备强大的处理功能,并提供方便的组态复杂控制系统的能力与用户自主开发专用高级控制算法的支持能力;易于组态,易于使用。支持多种现场总线标准以便适应未来的扩充需要。
◆系统的设计采用合适的冗余配置和诊断至模件级的自诊断功能,具有高度的可靠性。系统内任一组件发生故障,均不会影响整个系统的工作。
◆系统的参数、报警、自诊断及其他管理功能高度集中在CRT上显示和在打印机上打印,控制系统在功能和物理上真正分散,
◆整个系统的可利用率至少为99.9%;系统平均无故障时间为10万小时,实现了核电、火电、热电、石化、化工、冶金、建材诸多领域的完整监控。
◆网络结构可靠性、开放性及先进性。
◆标准的Client/Server结构。
◆开放并且可靠的操作系统。系统的操作层采用bbbbbbS 操作系统;
◆标准的控制组态软件。
◆可扩展性和可裁剪性,保证经济性。
工业现场情况多种多样,某些环境禁止、限制使用电缆或很难使用电缆,有线网络很难发挥作用,因此无线工业通讯技术的使用成为必然。随着微电子技术的不断发展,无线局域网技术将在工业控制网络中发挥越来越大的作用。计算机网络技术、无线技术以及智能传感器技术的结合,产生了“基于无线技术的网络化智能传感器”的全新概念。这种基于无线技术的网络化智能传感器使得工业现场的数据能够通过无线链路直接在网络上传输、发布和共享。泰阳工控采用无线网络在一些特殊环境下有效地弥补了有线网络的不足,进一步完善了工业控制网络的通信性能。
功能强大的界面软件
对于工业控制系统,操作人员需要对设备参数,运行状态,控制对象进行实时的监控。以便准确及时了解当前工艺情况。
泰阳工控采用国内外先进组态软件,如SIEMENS WINCC ,KINGVIEW,MCGS等开发计算机上位软件。建立友好人机对话方式.
1、形象动画地显示工艺流程。
2、艺参数的输入,存储,调用。
3、善的系统报警功能。历史报警的查询,打印。
4、善的日,月等报表功能。可进行产量,日期,时间的自动统计和定时打印。
5、户的分层受权管理,使系统更安全。
6、进行参数趋势图显示。
1、为什么要用PC/PPI接口?
因S7200CPU使用的是RS485,而PC机的COM口采用的是RS232,两者的电气规范并不相容,需要用中间电路进行匹配。PC/PPI其实就是一根RS485/RS232的匹配电缆。
2、RS485采用差分的两根A/B线进行通讯,A和B两根线的相对电平来表达0和1,同一时刻只能由一个设备驱动总线,其它在总线上的设备此时都处在接收状态;
RS232接口收RXD和发TXD线独立,可以同时进行收发通讯,同时RS232设计成两个设备之间的单独通讯,不支持多于两个设备的联接,所以它的收发随时都可进行,不会发生通讯碰撞。
3、RS485总线上什么设备、何时可以驱动总线,是由通讯协议决定的。RS485和RS232都没有多余的引线告知处在中间的匹配电缆什么时候可以驱动RS485总线,而且匹配电缆一般也不懂具体的通讯协议。匹配电缆单方面根据RS232的发送需求来决定是否需要驱动RS485总线:当TXD线上有发送数据脉冲时,匹配电缆立即由接收态转为发送态,驱动RS485总线,当TXD上数据脉冲消失后,匹配电缆再转为接状态,允许RS485总线上的其它设备驱动总线。
4、为什么要设置波特率和数据位长?
从PC/PPI的规范中有一条:
Direction change delay: RS–232 stop bit edge received to RS–485 transmission disabled
1.4 character times max.(1.4 x 11/baud) = 1.6 ms at 9600 baud
意思是说,从收到RS232的停止位起,到RS485发送停止(即停止驱动RS485总线),这个时间*长为1.4个字符的发送时间,是个相对于波特率和字符位数的量。如果RS232发送的字符间隔小于1.4的字符宽度,那么PC/PPI连续驱动RS485总线,可以终止驱动又再驱动而引入的噪音。
从几百波特率到几K甚至几十K波特率,相差10位以上,低波特率的数据脉冲,在高波特率时与字符间隔相当,所以要正确设置以保通讯的稳定可靠。
5、为什么有的(非西门子)匹配电缆不用设置,能做到自适应?
据我所知,如果匹配电缆只在发送0时驱动总线,在发送1时不驱动总线,可以做到自适应。通过电路上的设计,当没有设备驱动总线时,让总线处于1的状态,所以,不驱动总线也可以发送1(不知道这样做可连接的站点数是否会下降?)。RS232发送完停止位后,TXD即停留在1状态,直至下一个字符的起始位为止,所以,自适应的匹配电缆在发送完停止位后,立即停止驱动(释放)RS485总线,与波特率和位长无关.
产品推荐