浔之漫智控技术(上海)有限公司
  • 西门子模块6ES7231-0HF22-0XA0产品齐全
  • 西门子模块6ES7231-0HF22-0XA0产品齐全
  • 西门子模块6ES7231-0HF22-0XA0产品齐全

产品描述

品牌西门值+ 包装说明 全新 - 产品规格子 现场安装

西门子模块6ES7231-0HF22-0XA0产品齐全

一、 引言
     数控技术是综合应用了电子技术、计算技术、自动控制与自动检测等现代科学技术成就而发展起来的,目前在许多领域尤其是在机械加工行业中的应用日益广泛。  
     数控系统按其控制方式划分有点位控制系统、直线控制系统、连续控制系统。在机械加工时,数控系统的点位控制一般用在孔加工机床上(例如钻孔、铰孔、镗孔的数控机床),其特点是,机床移动部件能实现由一个位置到另一个位置的精确移动,即准确控制移动部件的终点位置,但并不考虑其运动轨迹,在移动过程中不切削工件。   
     实现数控系统点位控制的通常方法可以有两种:一是采用全功能的数控装置,这种装置功能十分完善,但其价格却很昂贵,而且许多功能对点位控制来说是多余的;二是采用单板机或单片机控制,这种方法除了要进行软件开发外,还要设计硬件电路、接口电路、驱动电路,特别是要考虑工业现场中的抗干扰问题。  
     由于可编程控制器(PLC)是专为在工业环境下应用而设计的一种工业控制计算机,具有抗干扰能力强、可靠性极高、体积小、是实现机电一体化的理想控制装置等显著优点,因此通过实践与深入研究,本文提出了利用PLC控制步进电机实现数控系统点位控制功能的有关见解与方法,介绍了控制系统研制中需要认识与解决的若干问题,给出了控制系统方案及软硬件结构的设计思路,对于工矿企业实现相关机床改造具有较高的应用与参考价值。 
 二、控制系统研制中需要认识与解决的若干问题
 防止步进电机运行时出现失步和误差 
     步进电机是一种性能良好的数字化执行元件,在数控系统的点位控制中,可利用步进电机作为驱动电机。在开环控制中,步进电机由一定频率的脉冲控制。由PLC直接产生脉冲来控制步进电机可以有效地简化系统的硬件电路,进一步提高可靠性。由于PLC是以循环扫描方式工作,其扫描周期一般在几毫秒至几十毫秒之间,因此受到PLC工作方式的限制以及扫描周期的影响,步进电机不能在高频下工作。例如,若控制步进电机的脉冲频率为4000HZ,则脉冲周期为0.25毫秒,这样脉冲周期的数量级就比扫描周期小很多,如采用此频率来控制步进电机。则PLC在还未完成输出刷新任务时就已经发出许多个控制脉冲,但步进电机仍一动不动,出现了严重的失步现象。若控制步进电机的脉冲频率为100HZ,则脉冲周期为10毫秒,与PLC的扫描周期约处于同一数量级,步进电机运行时亦可能会产生较大的误差。因此用PLC驱动步进电机时,为防止步进电机运行时出现失步与误差,步进电机应在低频下运行,脉冲信号频率选为十至几十赫兹左右,这可以利用程序设计加以实现。
 保证定位精度与提高定位速度之间的矛盾 
     步进电机的转速与其控制脉冲的频率成正比,当步进电机在极低频下运行时,其转速必然很低。而为了保证系统的定位精度,脉冲当量即步进电机转一个步距角时或工作台移动的距离又不能太大,这两个因素合在一起带来了一个突出问题:定位时间太长。例如若步进电机的工作频率为20HZ,即50ms走一步,取脉冲当量为δ=0.01mm/步,则1秒钟或工作台移动的距离为20x0.01=0.2mm,1分钟移动的距离为60x0.2=12mm,如果定位距离为120mm,则定位时间需要10分钟,如此慢的定位速度在实际运行中是难以忍受的。 
     为了保证定位精度,脉冲当量不能太大,但却影响了定位速度。因此如何既能提高定位速度,同时又能保定位精度是一项需要认真考虑并切实加以解决的问题。
 可变控制参数的在线修改 
     PLC应用于点位控制时,用户显然希望当现场条件发生变化时,系统的某些控制参数能作相应的修改,例如步进电机步数的改变,速度的调整等。为满足生产的连续性,要求对控制系统可变参数的修改应在线进行。尽管使用编程器可以方便快速地改变原设定参数,但编程器一般不能交现场操作人员使用;虽然利用PLC的输入按键并配合软件设计也能实现控制参数的在线修改,但由于PLC没有提供数码显示单元,因此需要为此单独设计数码输入显示电路,这又将极大地占用PLC的输入点,导致硬件成本增加,而且操作不便,数据输入速度慢。所以,应考虑开发其他简便有效的方法实现PLC的可变控制参数的在线修改。 
 其他问题 
     为了实现点位控制过程中数字变化的显示及故障输出代码的显示等要求,另外还得单独设计PLC的数码输出显示电路。由于目前PLC I/O点的价格仍较高,因此应着重考虑选用能压缩显示输出点的合适方法。此外,为保证控制系统的安全与稳定运行,还应解决控制系统的安全保护问题,如系统的行程保护、故障元件的自动检测等。
 三、控制系统方案
 将定位过程划分为脉冲当量不同的两个阶段 
     要获得高的定位速度,同时又要保定位精度,可以把整个定位过程划分为两个阶段:粗定位阶段和精定位阶段。这两个阶段均采用相同频率的脉冲控制步进电机,但采用不同的脉冲当量。粗定位阶段:由于在点位过程中,不切削工件,因此在这一阶段,可采用较大的脉冲当量,如0.1mm/步或1mm/步,甚至更高。例如步进电机控制脉冲频率为20HZ,脉冲当量为0.1mm/步,定位距离为120mm,则走完全程所需时间为1分钟,这样为速度显然已能满足要求。精定位阶段:当使用较大的脉冲当量使或工作台快速移动至接近定位点时,(即完成粗定位阶段),为了保证定位精度,再换用较小的脉冲当量进入精定位阶段,让或工作台慢慢趋近于定位点,例如取脉冲当量为0.01mm/步。尽管脉冲当量变小,但由于精定位行程很短(可定为全行程的五十分之一左右),因此并不会影响到定位速度。 
     为了实现上述目的,在机械方面,应采用两套变速机构。在粗定位阶段,由步进电机直接驱动或工作台传动,在精定位阶段,则采用降速传动。这两套变速机构使用哪一套,由电磁离合器控制。
 应用功能指令实现BCD码拨盘数据输入 
     目前较为先进的PLC不仅具有满足顺序控制要求的基本逻辑指令,而且还提供了丰富的功能指令。如果说基本逻辑指令是对继电器控制原理的一种抽象提高的话,那么功能指令就象是对汇编语言的一种抽象提高。BCD码数据拨盘是计算机控制系统中常用到的十进制拨盘数据输入装置。拨盘共有0~9+个位置,每一位置都有相应的数字指示。一个拨盘可代表一位十进制数据,若需输入多位数据,可以用多片BCD码拨盘并联使用。 
      笔者选用BCD码拨盘装置应用于PLC控制的系统,这样无需再设计数码输入显示电路,有效地节省了PLC的输入点,简化了硬件电路,并利用先进的功能指令实现数据的存储和传输,因此能极方便地实现数据的在线输入或修改(如计数器设定值的修改等),若配合简单的硬件译码电路,就可显示有关参数的动态变化(如电机步数的递减变化等)。为避免在系统运行中拨动拨盘可能给系统造成的波动,*好设置一输入键,当确认各片拨盘都拨到位后再按该键,这时数据才被PLC读入并处理。
 “软件编码、硬件解码” 
     为满足压缩输出点这一前提条件,采用“软件编码、硬件解码”的方法设计PLC的数码输出显示电路。例如,对于9种及其以下的故障状态显示,可采用8-4软件编码,4-8硬件解码,使显示故障的输出点压缩为4个,硬件电路包含74LS04、74LS48、共阴数码管等器件。
 PLC外部元件故障的自动检测 
     由于PLC具有极高的可靠性,因此PLC控制系统中绝大部分的故障不是来自PLC本身,而是由于外部元件故障引起的,例如常见的按钮或行程开关触点的熔焊及氧化就分别对应着短路故障及开路故障。系统一旦自动检测到元件故障,应不仅具有声光报警功能,而且能立即显示故障代码,以便用户据此迅速判断出故障原因。为节省篇幅,此项内容的程序设计思路见参考文献。 
 四、控制系统的软硬件结构
 软件结构 
     软件结构根据控制要求而设计,主要划分为五大模块:即步进电机控制模块、定位控制模块、数据拨盘输入及模块、数码输出显示模块、元件故障的自动检测与报警模块。   
     由于整个软件结构较为庞大,脉冲控制器产生0.1秒的控制脉冲,使移位寄存器移位,提供六拍时序脉冲,通过三相六拍环形分配器使三个输出继电器Y430、Y431、Y432按照单双六拍的通电方式控制步进电机。为实现定位控制,采用不同的计数器分别控制粗定位行程和精定位行程,计数器的设定值依据行程而定。例如,设或工作台欲从A点移至C点,已知AC=200mm,把AC划分为AB与BC两段,AB=196mm,BC=4mm,AB段为粗定位行程,采用0.1mm/步的脉冲当量快速移动,利用了6位计数器(C660/C661),而BC段为精定位行程,采用0.01mm/步的脉冲当量精确定位,利用了3位计数器C460,在粗定位结束进入精定位的同时,PLC自动接通电磁离合器输出点Y433以实现变速机构的更换。
 五、结束语
     系统试验表明,本文提出的应用PLC控制步进电机实现数控系统点位控制功能的方法能满足控制要求,在实际运行中是切实可行的。所研制的控制系统具有程序设计思路清晰、硬件电路简单实用、可靠性高、抗干扰能力强,具有良好的性能价格比等显著优点,其软硬件的设计思路可应用于工矿企业的相关机床改造。

202207281244519172844.jpg202202231632200382714.jpg


1  概  述
    在组合机床自动线中,一般根据不同的加工精度要求设置三种滑台(1)液压滑台,用于切削量大,加工精度要求较低的粗加工工序中;(2)机械滑台,用于切削量中等,具有一定加工精度要求的半精加工工序中;(3)数控滑台,用于切削量小,加工精度要求很高的精加工工序中。可编程控制器(简称PLC)以其通用性强、可靠性高、指令系统简单、编程简便易学、易于掌握、体积小、维修工作少、现场接口安装方便等一系列优点,被广泛应用于工业自动控制中。特别是在组合机床自动生产线的控制及CNC机床的S、T、M功能控制更显示出其卓越的性能。PLC控制的

步进电机开环伺服机构应用于组合机床自动生产线上的数控滑台控制,可省去该单元的数控系统使该单元的控制系统成本降低70~,甚至只占用自动线控制单元PLC的3~5个I/O接口及<1KB的内存。特别是大型自动线中可以使控制系统的成本显著下降。


2  PLC控制的数控滑台结构
    一般组合机床自动线中的数控滑台采用步进电机驱动的开环伺服机构。采用PLC控制的数控滑台由可编程控制器、环行脉冲分配器、步进电机驱动器、步进电机和伺服传动机构等部分组成,伺服传动机构中的齿轮Z1、Z2应该采取消隙措施,避免产生反向死区或使加工精度下降;而丝杠传动副则应该根据该单元的加工精度要求,确定是否选用滚珠丝杠副。采用滚珠丝杠副,具有传动效率高、系统刚度好、传动精度高、使用寿命长的优点,但成本较高且不能自锁。  
 
3  数控滑台的PLC控制方法
    数控滑台的控制因素主要有三个:

3.1  行程控制
    一般液压滑台和机械滑台的行程控制是利用位置或压力传感器(行程开关/死挡铁)来实现;而数控滑台的行程则采用数字控制来实现。由数控滑台的结构可知,滑台的行程正比于步进电机的总转角,因此只要控制步进电机的总转角即可。由步进电机的工作原理和特性可知步进电机的总转角正比于所输入的控制脉冲个数;因此可以根据伺服机构的位移量确定PLC输出的脉冲个数:
                      n= DL/d                      (1)
式中 DL——伺服机构的位移量(mm)
d ——伺服机构的脉冲当量(mm/脉冲)
3.2  进给速度控制
伺服机构的进给速度取决于步进电机的转速,而步进电机的转速取决于输入的脉冲频率;因此可以根据该工序要求的进给速度,确定其PLC输出的脉冲频率:
f=Vf/60d   (Hz)                  (2) 
式中 Vf——伺服机构的进给速度(mm/min)

3.3  进给方向控制
    进给方向控制即步进电机的转向控制。步进电机的转向可以通过改变步进电机各绕组的通电顺序来改变其转向;如三相步进电机通电顺序为A-AB-B-BC-C-CA-A…时步进电机正转;当绕组按A-AC-C-CB-B-BA-A…顺序通电时步进电机反转。因此可以通过PLC输出的方向控制信号改变硬件环行分配器的输出顺序来实现,或经编程改变输出脉冲的顺序来改变步进电机绕组的通电顺序实现。

4  PLC的软件控制逻辑
    由滑台的PLC控制方法可知,应使步进电机的输入脉冲总数和脉冲频率受到相应的控制。因此在控制软件上设置一个脉冲总数和脉冲频率可控的脉冲信号发生器;对于频率较低的控制脉冲,可以利用PLC中的定时器构成,如图2所示。脉冲频率可以通过定时器的定时常数控制脉冲周期,脉冲总数控制则可以设置一脉冲计数器C10。当脉冲数达到设定值时,计数器C10动作切断脉冲发生器回路,使其停止工作。伺服机构的步进电机无脉冲输入时便停止运转,伺服执行机构定位。当伺服执行机构的位移速度要求较高时,可以用PLC中的高速脉冲发生器。不同的PLC其高速脉冲的频率可达4000~6000Hz。对于自动线上的一般伺服机构,其速度可以得到充分满足。

5  伺服控制、驱动及接口
5.1  步进电机控制系统的组成
    步进电机的控制系统由可编程控制器、环行脉冲分配器和步进电机功率驱动器组成,控制系统中PLC用来产生控制脉冲;通过PLC编程输出一定数量的方波脉冲,控制步进电机的转角进而控制伺服机构的进给量;同时通过编程控制脉冲频率——既伺服机构的进给速度;环行脉冲分配器将可编程控制器输出的控制脉冲按步进电机的通电顺序分配到相应的绕组。PLC控制的步进电机可以采用软件环行分配器,也可以采用如图1所示的硬件环行分配器。采用软环占用的PLC资源较多,特别是步进电机绕组相数M>4时,对于大型生产线应该予以充分考虑。采用硬件环行分配器,虽然硬件结构稍微复杂些,但可以节省占用PLC的I/O口点数,目前市场有多种专用芯片可以选用。步进电机功率驱动器将PLC输出的控制脉冲放大到几十~上百伏特、几安~十几安的驱动能力。一般PLC的输出接口具有一定的驱动能力,而通常的晶体管直流输出接口的负载能力仅为十几~几十伏特、几十~几百毫安。但对于功率步进电机则要求几十~上百伏特、几安~十几安的驱动能力,因此应该采用驱动器对输出脉冲进行放大。

5.2  可编程控制器的接口
    如伺服机构采用硬件环行分配器,则占用PLC的I/O口点数少于5点,一般仅为3点。其中I口占用一点,作为启动控制信号;O口占用2点,一点作为PLC的脉冲输出接口,接至伺服系统硬环的时钟脉冲输入端,另一点作为

步进电机转向控制信号,接至硬环的相序分配控制端,如图3所示;伺服系统采用软件环行分配器时,
                                                           
6  应用实例与结论
    将PLC控制的开环伺服机构用于某大型生产线的数控滑台,每个滑台仅占用4个I/O接口,节省了CNC控制系统,其脉冲当量为0.01~0.05mm,进给速度为Vf=3~15m/min,完全满足工艺要求和加工精度要求



http://www.absygs.com 公司后提示信息

产品推荐