产品描述
西门子模块6ES7223-1BH22-0XA8功能参数
近年来随着变频器技术发展,其可靠性大大提高,生产成本降低,以优越的起制动控制特性,在各种行业得到了广泛应用,下面介绍海利普变频器在浙江某起重机厂的起重机中的使用情况。
一、系统配置
根据起重机电机驱动的特性和技术要求,选用HOLIP-A系列变频器作为大、小行车行走机构的电机驱动。起重机大车运行方向有前后、小车运行方向有左右。依据运行速度要求又分为1——4档。加减速时间为3——6s。通常小车行走机构采用一台电机,而大车行走机构需采用2——4台电机。大、小车本身的惯性也较大,为防止电机被负载倒拖反转而处于发电状态,产生过电压,因此大小车变频器都配备了制动单元及制动电阻来释放能量。考虑到机械的振动及移动路径曲折时的反作用转矩,所以应充分注意机械的结构,制动电阻值要按吸收*大再生电能的工况选定。起重机整个电气系统由PLC控制,变频器通过开关量端子接受PLC控制信号。小型起重机亦可使用变频器内置PLC控制,线路简单、使用方便。
变频器容量的决定:
1. 定负荷移动时的容量P
P=(W×u×V)/6120×η(KW)
式中:W—额定重量(kg)
u—移动阻力
V—额定速度
η—机械效率
在室外的情况下,移动阻力中还须包括风阻和由于移动路径的倾斜度(水平度)而加大的阻力等。
2. 变频器容量
变频器额定电流﹥电动机额定电流×(k1×k3)/k2
式中: k1——所需*大转矩÷电动机额定转矩
k2——1.5(变频器的过载能力)
k3——1.1(余量)
二、变频器主要参数设置
大车变频器带有几个电机时应运行于线性频率/电压特性。1—4档速度变化采用固定频率设定1档=5HZ、2档=10HZ,3档=25HZ,4档=50HZ,同时利用变频器的制动器接通、断开功能由输出继电器触点控制机械制动器,使行走机构在电机停止时不会由于外力而随意移动。注意中间电压和转矩补偿的调整,加减速时间因天车吨位大小而宜。
CD012=6,CD013=6,CD033=1,CD058=02,CD059=04,CD076=2,CD000=5,CD080=10,CD081=25,CD082=50
三、结束语
起重机采用变频器驱动后使整机性能有较大提高,如效率高、功率因数好、节能效果显著;外部配线简单、配线费用下降;可无级调速、行走平滑稳定;电动机构造简单、可靠性高,能在恶劣环境下使用,大大减少了维修工作量和易损部件,极大地改善了维护性能;变频器自身保护功能齐全,如过流、过载、过压等都能及时报警及停止,减少了起重机故障,提高了安全性能。同时,变频器具有限流作用,软起动可以减少起动时对电网的冲击,有利于车间内其它设备正常运行。
1 引言
近10年来,虽然我国的啤酒装备配套水平有很大提高,但和国外相比,由于起步较晚,尤其是成套设备,差距较大。自动化程度低,因而产品效率较低,生产质量也不高,啤酒能耗较大,这都是我国啤酒工业急待解决的问题。本论文经过认真调研、分析,对目前国内外较先进的啤酒发酵工艺控制系统进行了综合比较与评价,同时,又充分考虑企业的综合实力、现状与发展等因素,此控制系统结构选定IPC——PLC DCS即工业控制计算机与可编程序控制系统。并提出一种基于神经网络的模糊自适应PID控制算法,解决了啤酒发酵过程的纯滞后过程、大惯性、和非线性等问题。
2 啤酒发酵工艺控制
2.1啤酒发酵工艺曲线
啤酒发酵的工艺曲线对质量有直接影响。啤酒口味和实际要求的不同,啤酒的发酵工艺曲线也就不同,但是对于确定好的啤酒发酵工艺,就应严格按照工艺曲线去控制温度和压力等,这样才能保证啤酒的质量。啤酒发酵工艺曲线如图1—1所示。
2.2 啤酒发酵温度控制
在啤酒发酵过程中,酵母的发酵性能受发酵温度的影响。由于发酵中有热量释放出来,因而使发酵中的麦汁温度上升,同时促使酶反应加速。酵母的发酵性能必须限定在一定范围内,这就是实际发酵操作中的控制工作。啤酒温度控制原理如图1—2。
3 IPC-PLC DCS 的设计
本系统为上下两级递阶结构。具体构成如图1—3所示。
主要包括以下几方面:
(1). 上、下位计算机:控制上位机采用两台工业控制计算机,由于控制对象较多,并兼顾今后系统升级的需要,所以,下位机采用四台中型PLC。
(2). 接口硬件包括:开关量的I/O 采用PLC的DI、DO模块;温度、压力、液位采用A/D转换模块;考虑到下位机需要与上位机进行串行通信,选用日本立石电机公司的OMRON C200HE系列可编程控制器。上下位机通信采用RS—232接口。1#下位机配置如图1-4所示。
(3). 显示系统,包括大型模拟屏,以及上位机彩色监视器。
4 控制算法的设计
啤酒生产发酵过程的控制算法很多,比较常用的是PID控制算法。在实际生产现场中,PID参数整定与自整定的方法也很多,但往往难以实施或不太理想,常规PID控制器参数常常整定不良,性能欠佳,对运行工况适应性差。本论文提出一种基于神经网络的模糊自适应PID控制方案。本控制系统结构如图1—5。
它主要包括四个部分:
(1). 传统PID控制结构 由PID控制器和广义被控对象构成一个典型的闭环控制系统,只是此时的PID参数通过神经网络实现在线修改。
(2). 模糊量化模块 对系统的状态变量进行归档模糊化和归一化处理。
(3). 辨识网络NN1 它主要用于建立被控系统的辨识模型,为NN2提供必要的信息。
(4). 神经网络NN2 根据系统的状态,调节PID控制器的参数以期达到某种性能指标的*优。
5 实验
考虑到啤酒发酵过程中的诸多因素,即被控对象是参数时变的非线性系统。针对以上提出的自学习控制算法,对被控对象进行。见图1-6。通过与图1-1进行比较可以看出基于神经网络的模糊PID控制系统能通过在线学习,不断改善对系统的控制性能,具有较高的拟人智能性。
6 结 论
本控制系统应用了基于神经网络的模糊PID控制算法,使IPC-PLC分布式控制系统具有良好的执行精度,且抗干扰能力强,使温度曲线得到较好的拟和,在实际生产中应用取得了令人满意的效果。
塑料通过挤出机塑化成均匀的熔体,并在塑化中建立的压力作用下,并使螺杆连续地定温,定量,定压地挤出机头。大部份热塑性塑料均采用此方杆挤出机有多种不同的型号和规格,*常用的挤出机就是螺杆挤出机。采用变频器的挤出机主机传动,能够完全满足挤出机的工艺要求,达到必要的工艺控制指标,经过各地多年的实际运行来看,运行稳定,产品的适应性强,经济效益明显。
一、 挤出机传动的特点
挤出成型设备的组成部分
一台挤出设备通常由主机(挤出机)、辅机及其控制系统组成。通常这些组成部分统称为挤出机组。
1. 主机
一台挤出机主机由挤压、传动、加热冷却三部分系统组成。
挤压系统主要由螺杆和机桶组成,是挤出机的关键部分;
传动系统中起作用是驱动螺杆,要保证螺杆在工作过程中具备所需要的扭矩和转速;
加热冷却系统主要来保证物料和挤压系统在成型加工中的温度控制。
2. 辅机
挤出设备的辅机的组成根据制品的种类而定。一般说来,辅机由剂透定型装置、冷却装置、牵引装置、切割装置以及制品的卷取或堆放装置等部分组成。
3. 控制系统
挤出机的控制系统主要由电器、仪表和执行机构组成,其主要作用为:
(1)控制主、辅机的拖动电机,满足工艺要求所需的转速和功率,并保主、辅机能协调地运行。
(2)控制主、辅机的温度、压力、流量和制品的质量。
(3)实现整个机组的自动控制。
二、传统螺杆挤出机的控制
1)在传统的螺杆挤出机系统中,螺杆由直流电机驱动。在直接传动情况下螺杆直接由齿轮
箱驱动;在间接传动情况下,螺杆由皮带和牵引盘驱动。传统的直流电机本身存在着一
定的缺点:例如直流电机的电刷每个月就要更换一次,在多粉尘或腐蚀性环境中直流电
机需要经常清洗,有时甚至还需要从车间外为直流电机通入洁净的冷却空气。
2)间接传动螺杆挤出机的缺点在于:存在于皮带滑差,皮带会造成一定的能量损失,更多
的机械装置增加了磨损和发生故障的可能性。而直流电机*大的弊端噪音过大,电刷打火,转子污染,电机温度过高,排气不充分和电机震动。因此使用直流电机的螺杆挤出机维护费用更高,直流电动机的*初成本也更高一些。
三、 变频器在挤出机的应用
变频器用于挤出设备,有高质量的运行特性,这是因矢量控制型变频器本身可提供的良好的产品性能决定的。
1〉高性能CPU提供更高频率响应
变频器内置的CPU,具有高控制精度、快速响应频率的性能。 挤出机的工艺要求主要是控制出口的压力恒定,设备在刚开始工作时,进行转速控制,在达到需求压力时,要切换为压力控制。切换过程应该无冲击,需要变频器高的控制精度,来接应压力信号。
2〉矢量控制提供低频时高转矩输出
挤出机的主驱动电机主要通过平行轴斜齿轮减速器减速后带动螺杆转动,在基频以下改变运行速度时为恒转矩调速。
以往使用V/F控制型变频器,由于要考虑负载的启动转矩,要设定相应的转矩提升准位,如果转矩提升设置过高,在低频轻载时会励磁太大,容易引起电机严重发热,影响到设备的稳定运行。
采用无速度传感器矢量型变频器系列,使用自学习功能可观测电机参数,不但能保证电机在低频时良好的输出特性,变频器本身的自动节能运行功能会随转矩的改变而减少输出的电流,不但能节省电能,更能上述工作隐患发生的可能性。
3〉转矩限定和转差补偿,转速控制精度高达0.1%
产品推荐