浔之漫智控技术(上海)有限公司
  • 6ES7222-1HD22-0XA0库存现货
  • 6ES7222-1HD22-0XA0库存现货
  • 6ES7222-1HD22-0XA0库存现货

产品描述

品牌西门值+ 包装说明 全新 - 产品规格子 现场安装

6ES7222-1HD22-0XA0库存现货


燃烧时煤气和空气以一定比例在炉内混合燃烧产生热量,格子砖吸热蓄能;当炉顶温度上升到1300℃左右时停止燃烧。完成燃烧的热风炉从炉底通入冷风,冷风在炉内与格子砖进行热交换将冷风加热成具有一定风温的热风后从炉顶流出,供给需要的工艺设备,这一过程为送风。同一时间只有一座热风炉进行送风,此时若另有一座炉燃烧达到设定温度先停止燃烧,关闭该炉的所有进、出口,进行焖炉;待需要送风时才开启送风口和进风口。每座热风炉送风进行一段时间后,格子砖的热能逐渐减少,送出的热风温度降低,当风温降低到一定值时停止送风,切换到燃烧状态,由其他燃烧或焖炉状态的热风炉切换到送风状态。如此循环。热风炉生产主要是操作各个阀门的开闭来实现三种工作状态的切换,涉及的阀门有30多个,阀体体积较大、分布分散、处在户外、操作不便,现场兼有工业煤气等有毒气体的危害,工作条件恶劣。同时还要监控风温、炉温、烟道温度,原先运行人员均在现场观测,工作量大、效率低,且有高温伤害等危险。故在原工作方式下岗位人员需求大、换炉时间长、工作条件恶劣、效率低下。燃烧过程也存在按经验燃烧,存在燃烧不完全、燃料利用率低、有害气体如CO等排放量较大等问题。

随着PLC技术的成熟、为适应现代工厂自动化发展需要,运用PLC+CRT的方式,实现热风炉燃烧智能控制,所有设备的状态监测、阀门的切换操作均通过上位机监控完成,燃烧比例采用自动控制,替代传统的现场操作模式。

二、运行情况

阀门操作全部改为电动执行机构,通过程控系统发出开、闭控制指令,操作员只需点击鼠标,用键盘给出阀门开度信号,轻松完成。

各处温度监视通过热电阻、热电偶等传感器将温度信号变送输入到程控系统,集中在上位机画面显示,替代人眼观测,实时、、安全。

换炉过程既可选择逐一操作单台设备,也可采用程控自动操作;自动换炉时只需选择该座热风炉需要切换的状态,便可由程序控制按工艺顺序自动完成整个换炉的设备操作。

高炉冶炼产生的废气——高炉煤气中含有大量CO经回收处理后供热风炉作为主燃料,既减少废放污染,又燃料节约成本。经工艺计算得出与空气燃烧的*佳比值,通过程序控制煤气与空气管道的流量,使之按此比例混合燃烧,提高了燃料的利用率和能效。

程控系统还增加了报警、趋势显示、报表等功能,进一步增加了生产的安全性;自动的报表功能替代人工抄表,减少工作量,生产记录更准确、及时。在传统操作模式下一个运行班组需要10来人左右,在程控操作下,*低只需2人即可完成生产运行的操作;运行人员不用在现场频繁奔走,只需在上位机操作台前工作即可,生产环境得到极大改善,劳动安全性和效率大大提高。

三、效益分析

结合了先进的工业计算机监控技术及现场总线技术,对工矿企业中使用的热风炉进行智能控制的专业系统。具有集中控制、实时监控、自动燃烧等特点。可以使燃料按*佳比值燃烧、燃烧更充分,提高燃料利用率、减少污染物排放、保护环境,并使加热炉温度进一步提高。2003年在广东韶关冶炼厂一系统热风炉改造中成功应用该智能控制系统后,取代了原有纯手动操作的生产模式,极大提高了整个热风炉系统生产自动化水平和生产效率,热风炉换炉周期缩短近1小时、风温提高 50℃以上,产效提高50﹪,充分挖掘出原设备潜力,实现了企业生产的、安全、环保、节能,由此带来可观的综合效益。

四、结论

热风炉采用上述中智能燃烧控制技术后,产生较大的经济效益和社会、环境效益:显著节约能源,大大降低企业的生产成本;提高产品质量;降低生产设备的故障率;延长设备的使用寿命;降低设备维修工作量;降低噪音;改善操作人员劳动环境。提高企业的综合竞争力和发展后劲,建议尽快大力推广应用。

1 引言
今天,随着对工业自动化的要求越来越高,以及大量控制设备和过程监控装置之间通信的需要,"监控和数据采集系统"越来越受到用户的重视。在动力系统方面,以柴油发电机组作为应急备用电源的发电厂,在工厂、矿山、高层建筑、医院、邮电、宾馆、银行等许多部门都得到了广泛的应用。为了提高供电质量和供电可靠性,改善操作人员的工作条件,减少维护运行人员,备用发电站迫切要求实现自动化运行和管理。该监控系统由监视主机(包括通信板)和若干现场的从站(正航A3)组成。实现发电机组的数据采集、报警、存储、备份等服务。本文主要介绍下位机A3的系统原理。

2 系统的总体设计
结合生产实际的需要,考虑该发电机组的自动化系统由5大功能部件组成(系统的硬件图如图1所示)。
(1) 发电机组的自动启动和自动停机;
(2) 工程市电和机电的自动切换;
(3) 发电机组电压和频率的自动调节;
(4) 发电机组故障自动检测,报警和故障处理;
(5) 发电机组电压、电流、频率、有功功率、启动电池电压等电量参数的自动调节。

3 系统组成
3.1 A3系统PLC的特性和特点
正航A3系列可编程控制器,性价比高,硬件配置齐全,它的特点与性能如下:
(1)机内有高速计数器,可同时输入三路高速脉冲,并可输出频率和脉宽可调的高速脉冲信号。
(2)具有21个中断源的中断优先管理,并配有RS485接口,可实现PLC 与PC机之间的远程通讯,便于上位机监控和联网。
(3)具有结构紧凑、组装灵活、编程简单,抗干扰能力强、可靠性高等特点。
由此可见,它非常适用于工业控制中小型自动控制系统。经分析,决定采用A3系列可编程控制器作为发电机组自动控制系统的核心部件。

3.2 PLC 配置及I/O的分配和功能
经过分析,本系统采用10个开关量输入,10个开关量输出和3个模拟量输入,即可满足系统控制需求,因此——PLC配置如下:
CPU模块:A3-C2405DT
AI模块: A3-AI0401LA

I/O的分配和功能如下:
开关量输入:
IO.0:输入中断 (配合脉宽调制使用)
IO.1:方式选择 (0-远程控制 1-自动)
IO.2:市电检测 (0-无市电 1-有市电)
IO.3:机电检测 (0-无机电 1-有机电)
IO.4:油压低 (0-油压正常 1-油压偏低)
IO.5:油水温高 (0-油水温正常 1-油水温偏高)
IO.6:高速计数器HSCI (利用高速计数器启动电池电压)
IO.7:紧急停车 (0-非紧急停车状态 1-紧急停车状态)
IO.0:复位 (1-手动复位)
(利用高速计数器转速)

开关量输入:
Q0.0:高速脉冲输出 (通过控制直流电磁铁调节转速)
Q0.1:停机 (1-停机电磁阀动作)
Q0.2:启动 (1-启动马达动作)
Q0.3:市电合闸 (1-市电主开关动作)
Q0.4:机电合闸 (1-机电主开关动作)
Q0.5:三启失败 (1-三启失败信号灯亮)
Q0.6:机组故障 (1-机组故障信号灯亮)
Q0.7:警铃 (1-警铃响)
Q1.0:自动强激磁 (1-强激磁继电器动作)
Q1.1:冷启动自动辅助 (1-冷启动辅助装置电磁阀动作)

模拟量输入:
AIWO:母线电压
AIW2:母线电流
AIW4:负载功率

4 系统实现
发电站自动化监控系统由机组自动启停控制,转速自动调节,电量参数自动检测,故障自动检测等功能模块组成。
4.1 制动启停控制
本功能模块是根据各开关量的输入状态,自动控制机组的启动、停止和机电与市电的相互切换。这主要属于顺序控制具有较强的逻辑控制。用A3实现简易而可靠。
4.2 转速调节
油机转速调节是通过CPU中高速脉冲输出脉宽调制(PWM)功能调节可控直流电磁铁控制柴油机油门开度来实现的。用CPU实现转速调节方法如下:转速信号由安装在柴油机上磁电式传感器获得,CPU通过高速计数器测量油机转速,测得转速信号送入PID调节器,将调节器输出的数字量转换为脉冲宽度的时间量,再通过CPU中的脉宽可调的高速脉冲输出(QO,0),经过功率驱动器控制可控制直流电磁铁调节紧油机门开度大小,从而实现对油机转速的调节。

本系统属于反馈控制和精确的数字控制,涉及到一些控制算法问题。
在CPU中,方法实现了一种转速控制的PID调节器。PID的模拟表达式: M(t)=KC(1+1/Ti*fe(t)dt+Td*de(t)/de(t))

在CPU中,微公和积分采用如下公式:
微分运算:[新差值E(n)-旧差值E(n-1)]÷控制周期TC
积分运算:[旧差值E(n-1)+新差值E(n)]×控制TO÷2
转速-与转速传感器频率关系的计算公式如下:
f————转速传感器信号频率
n————转速(转/分)
z————传感齿轮齿数

为更好的实现全程调速我们采用分程PID限幅
怠速时间:转速设定值 VW108=192
*小输出值 VW126=180
*大输出值 VW124=420
高速期间:转速设定值 VW108=VW212(由模拟电位器设定)
*小输出值 VW126=420
*大输出值 VW124=995

本系统中:n=1500r/mln z=128齿

这样f>3200Hz,故采用7kHz的高速计数器HSC2测量转速。停机时,将转速设定值和网缓冲器全部置0。输出限制在VW106=5上,以使PWM能够连续工作。同时使Q0.1=1,停机磁阀动作,切断油路达到停机目的。

202207281244519172844.jpg202202231632207636284.jpg

变频器始终固定驱动一台泵并实时根据其输出频率:控制其他辅助泵启停。即当变频器的输出频率达到*大频率时启动一台辅助泵工频运行、当变频器的输出频率达到*小频率时则停止*后启动的方式1:交替方式,变频器通常固定驱动某台泵,并实时根据其输出频率,使辅助泵工频运行,此方式与方式0不同之处在于若前一次泵启动的顺序是泵1→泵2,当变频器输出停止时,下一次启动顺序变为泵2→泵1。

    方式2:直接方式。当启信号输入时变频器启动第一台泵当该泵达到*高频率时,变频器将该泵切换到工频运行,变频器启动下一台泵变频运行,相反当泵停止条件成立时,先停止*先启动的泵。

    3.2PID的调节功能

    由压力传感器反馈的水压信号(4-20MA或-5V)直接送入PLC的A/D口(可以通过手持编程器),设定给定压力值,PID参数值,并通过PLC计算何以需切换泵的操作完成系统控制,系统参数在实际运行中调整,使系统控制响应趋于完整。

    3.3“休眠”功能

    系统运行时经常会遇到用户用水量较小或不用水(如夜晚)情况,为了节能,该系统专用设置了可以使水泵暂停工作的“休眠”功能,当变频器频率输出低于其下限时,变频器停止工作,2#、3#泵不工作,水泵停止(处于休眠状态)。当水压继续升高时将停止1泵,当水压下降到一定值时将先启动变频器运转2#泵或3#泵,当频率到达一定值后将启动1#泵调节2#或3#泵的转速。

    “休眠值”变频器输出的下限频率F507设置。

    “休眠确认时间”用参数F506设置,当变频器的输出频率低于休眠值的时间如小于休眠时间td时,即td<tn时变频器继续工作,当td>tn时变频器将进入休眠状态。

    “唤醒值”由供水压力下限启动,当供水压力低于下限值时由PLC发出指令唤醒变频器工作。

    经测试“休眠值”为10HZ。

    “休眠确认时间”td:20s

    “唤醒值”70%

    3.4通讯功能

    该系统具有计算机的通讯功能,PLC变频器均提供有RS232或485接口PLC可选用西门子的S7-200PLC或三菱FX可编程控制器可以与一套或多套系统进行通讯,利用计算机同时可以监测:电流、电压、频率、转速、压力等也可以控制变频器的各类参数。

    此外该系统还具有手动/自动操作,故障报警,运行状态,电流,电压、频率状态显示缺水保护等功能。

    4.运行特征

    以三台水泵的恒压供水系统为例,系统在自动运行方式下,可编程控制器控制变频器软启动1#泵,此时1#泵进入变频运行状态,其转速逐渐升高,当供水量Q<1/3Qmax时(Qmax为三台水泵全部工频运行时的*大流量),可编程控制器CPU根据根据供水量的变化自动调节1#泵的运行转速,以保所需的供水压力。当用水量Q在1/3Qmax

    当外供水量减少至1/3Qmax

    5.系统经济效益分析及系统优点

    5.1经济效益分析

    变量泵的功率N1、供水量Q1与泵转速n1三者的关系如下式:

    N1/Q1=(n1/n)3Q1/Q=n1/n

    式中Q—额定00%时,n=100%,N=100%,若n1=n时Q1=Q,N1=72.9%N,即可节电27.1%。若n1=80%n时Q1=80%Q,N1=51.2%N,即可节电48.8%。

    5.2系统优点

    5.2.1恒压供水技术因采用变频器改变电动机电源频率,而达到调节水泵转速改变水泵出口压力,比靠调节阀门的控制水泵出口压力的方式,具有降低管道阻力大大减少截流损失的效能。

    5.2.2由于变量泵工作在变频工况,在其出口流量小于额定流量时,泵转速降低,减少了轴承的磨损和发热,延长泵和电动机的机械使用寿命。

    5.2.3因实现恒压自动控制,不需要操作人员频繁操作,降低了人员的劳动强度,节省了人力。

    5.2.4水泵电动机采用软启动方式,按设定的加速时间加速,避免电动机启动时的电流冲击,对电网电压造成波动的影响,同时也避免了电动机突然加速造成泵系统的喘振。

    5.2.5由于变量泵工作在变频工作状态,在其运行过程中其转速是由外供水量决定的,故系统在运行过程中可节约可观的电能,其经济效益是十分明显的。由于其节电效果明显,所以系统具有收回投资快,而长期受益,其产生的社会效益也是非常巨大。




http://www.absygs.com 公司后提示信息

产品推荐