浔之漫智控技术(上海)有限公司
    关于我们
  • 企业文化 组织结构 分支公司 售后服务 技术支持
  • 西门子6ES7231-0HF22-0XA0库存现货
  • 西门子6ES7231-0HF22-0XA0库存现货
  • 西门子6ES7231-0HF22-0XA0库存现货

产品描述

品牌西门值+ 包装说明 全新 - 产品规格子 现场安装

西门子6ES7231-0HF22-0XA0库存现货

蓝牙装置之间有配对码,所以使用蓝牙传输数据,不会发生信号干涉。且蓝牙装置的体积很小,非常节省空间。

    信号通过蓝牙装置在汽车起重机上传输过程如图3所示:传感器根据应变片感应机构的应变,使用后续电路将应变量转化为电压量,再通过模/数转换电路把模拟信号转变为数字信号,并送入单片机处理,单片机再把信号用蓝牙装置发射给车载计算机。

    3、远程监控和故障诊断系统

    远程故障诊断是计算机科学、通讯技术与故障诊断技术相结合的一种新的设备故障诊断模式。它是基于GSM/GPRS无线通讯网络和GPS全球定位系统来完成整个过程的:从现场提取诊断信息,对诊断信息进行加工,并GPS信息,通过GSM/GPRS网络远距离传输给远程监控中心,监控中心对监测到的信息进行分析诊断,把诊断结果再经GSM/GPRS网络传输回工作现场,用以指导维修。

    3.1 信号的远程传输

    在工程中,无线通讯网络是基于GSM/GPRS网络的移动通讯系统。但GPRS与GSM相比,具有传输速度快,永远在线,传送数据量大且按流量收费等诸多优点。所以使用GPRS通讯方式明显优于GSM通讯方式。

    GPS模块是用于确定设备的地理位置信息的,这些信息暂时存放在PLC存储器内,经GPRS传送至远程监控中心,由监控中心对其运行状态实施在线监测,以便及时发现设备故障。管理者一旦发现故障,则迅速设备位置和故障发生的部位,及时排除故障。

    目前国内工程机械应用GPS的全球定位系统进行生产管理和远程监测的还很少,在国外卡特彼勒公司、徕卡和特林布尔导航设备有限公司均可独立提供基于GPS的汽车起重机定位系统,大大的提高了汽车起重机的作业生产率。因此运用GPS以及GPRS技术,实现远程监测和维护是今后汽车起重机的发展趋势。应用GPS和GPRS的信号传送方式如图4所示。

    3.2 远程监控系统的故障诊断中心

    在远程监控系统中,故障诊断中心是诊断故障的“专家”,它可以针对当前的问题提出解决方案。当某个汽车起重机将故障信息传至远程监控系统后,故障诊断中心需要完成下面四项工作:一、对故障信息进行分析处理,判断故障原因,提出解决方案;二、将故障原因及处理意见传回车载计算机,操作者作业;三、根据发生故障的汽车起重机在工程机械机群中的权值、故障部位在单机上的权值以及故障严重程度的权值来判断该故障对整个工程机械机群工作的影响,来管理和调度;四、当故障诊断中心无法判断故障原因及做出处理意见时,要及时将此信息传给专业故障诊断人员,由他们凭借专业的知识和经验作进一步处理。

    3.3 故障诊断中心的工作原理

    车载计算机读取操作员从键盘或触摸屏输入的参数、起重机结构参数以及各传感器采集的信号,再把这些给远程监控中心,故障诊断中心根据各个参数以及汽车起重机的数学模型进行计算处理,将计算得到的结果及相应参数通过GPRS反馈回汽车起重机,显示在LCD显示器上;*后判断是否需要报警,若发生危险操作,则进行相应报警及制动保护。

    3.4 工作状态的远程控制

    在作业中,监控中心还需对汽车起重机实行远程监测和控制。比如,发动机油温、油压的控制;合理配置发动机功率、减小排放、降低油耗等的节能控制;与其他工程机械的动作配合控制;防止倾翻和监测系统工作状态的安全控制等等。远程控制狭义上是指远程监控中心对汽车起重机的计算机发出指令,由车载计算机完成对起重机各部分的控制——计算机及时显示并将问题实时发送到监控中心,中心对到的信息进行故障分析,提出预防故障和合理保养的方案,再远程传送回来,车载计算机控制着车里的智能化模块,从而实现对各个系统的自动化控制。在广义上,远程监控系统不仅仅是为了实现自动控制,还要实现对各个部门的合理调度和管理。使各个系统和部门达到*佳的配合效果。图6为远程监控系统的各方配合情况。图中用GPS定位,GSM/GPRS无线传输信号。

  现代电子技术和通讯技术在汽车起重机上的应用,使得远程监控在汽车起重机上得以实现。本文探讨了信号在远程监控系统中的采集方式、处理方式、远程传递,以及在工程上遇到的若干问题。远程监控系统的应用能大大提高汽车起重机工作时的安全系数,为安全施工提供有利条件。

    1、“敏感部位”的确定

    影响汽车起重机安全性的因素有很多,比如振动、驾驶员的误操作、某些原件因腐蚀而造成刚度不够等等。故综合考虑汽车起重机的安全性能,合理采集汽车起重机各个“敏感部位”的信号,是首先要考虑的实际问题。以下以监测汽车起重机的倾覆力矩和起重臂刚度为例,来确定各个“敏感部位”,设置信号的采集方式。

    倾覆力矩和起重臂的刚度都是汽车起重机重要的安全参数,对它们的监测是保汽车起重机平稳工作的关键。在汽车起重机的“敏感部位”(如图1所示)安装传感器,把检测到的信号传给车载计算机。

    长度、角度传感器和压力传感器是测量起重力矩的(长度和角度传感器安装在起重臂的中部,压力传感器安装在变幅油缸的平衡阀处),它们可实时监测起重臂长度、角度以及液压缸的压力,从而测得起重机的载重量,起到限载的作用。载荷传感器可测量起重机的平稳状态(安装在四条液压支腿上),汽车起重机即将失衡时,其相邻两条支腿上的载荷会变小,当小到一定程度的时候,计算机就“认为”起重机将要失衡,并报警通知工作人员,以实现监测平稳性的目的。加速度传感器主要测量起重臂的振动状况(安装在起重臂的端部),它和长度、角度传感器相配合,能反应起重臂的挠度和刚度。即使起重机并未超载,但由于其他因素的影响,起重臂振动较强,使得被吊物体的惯性很大,起重机也容易失稳,甚至起重臂的刚性会变差,所以对起重臂振动的测量也不可忽视。

    2、信号的传输与处理

    2.1 CAN总线对数据的采集和处理

    CAN总线是国际上应用*广泛的现场总线之一,能实时采集传感器输出的数据。CAN总线通过iCAN模块检测各传感器的信号,并经CAN总线把数据输入到车载计算机中进行分析处理,将系统工作状态显示在人机界面上,及时警示并实时汽车起重机作业中的危险工况,实现了对汽车起重机的现场监控。在危险工况下,CAN总线通过对输出模块的实时控制,并在自动诊断系统和远程监控中心的协助下,进行自动诊断和故障排除,从而达到防止事故发生的目的。并为事故的分析处理提供可靠的依据。

    2.2 信号的无线传输

    若起重机结构紧凑,不易布置线路,另外复杂的信号连线还会给汽车起重机的维护造成困难,所以信号的无线连接也是今后汽车起重机的发展方向之一。

    目前蓝牙技术已发展的较成熟,信号稳定可靠,且价格便宜。蓝牙技术已广泛应用于电脑、手机、汽车和车辆等。大部分手机和其它移动装置所使用的是PowerClass2蓝牙模块,标准传输距离为10米,而蓝牙适配器与蓝牙适配器之间可以达到100米的通讯距离。这样的通讯距离在汽车起重机上基本可以满足要求。而且蓝牙系统支持一点对多点的通信,所以在传感器上安装蓝牙发射装置,传感器采集的数据可以用它无线传输给车载计算机上的蓝牙接受装置,不仅能实现数据检测和传输的无线化,而且也提高了的抗干扰性能。


202207281244519172844.jpg202202231632207636284.jpg


1  概述


青藏铁路格拉段纵贯我国西部青海、西藏两省区,跨越青藏高原,全线平均海拔在4 000 m以上,多年冻土冻胀融沉、严寒、风雪多、日温差大、光照强等自然条件对线路路基及轨道带来诸多不利影响。在青藏线铺设无缝线路,对于提高行车速度、减少线路维修、降低运营成本,实现铁路跨越式发展战略,具有十分重要的意义。
铁道部重大科研项目《青藏线格望段无缝线路试验段———关键技术研究》,在甘泉至玉珠峰间分三段计2318546 km 试铺无缝线路,其中铺设50kgPm 钢轨1611442 km ,铺设60 kgPm 钢轨71710 47 km ,均采用温度应力式区间无缝线路。
现场单元焊和锁定焊国内目前主要采用气压焊和铝热焊两种焊接工艺。铝热焊焊缝强度只是母材的70 %左右,焊接组织为铸造组织,常有铸造缺陷伴随产生且断头率高,不太被行家青睐。气压焊焊缝强度高、断头率低,但在青藏高原特殊的环境(年平均气压是海平面的60 %~70 %、空气中含氧量比海平面减少38~46 % ,焊接质量能否满足TBPT1632 —91《钢轨焊
接接头技术条件》的技术要求,有待于在实践中进一步研究与探讨。

2  传统气压焊机与数控气压焊机性能之比较


移动式气压焊设备主要包括: 压接机(含推凸装置) 、加热器、控制箱、水冷装置、高压电动泵站及辅助配套部分如端磨机、型打磨机、管路系统、氧气瓶、乙炔瓶及发电机组等。
2.1  传统气压焊机
传统的气压焊机都是手工操作和控制,每次操作过程(夹紧、摆火、气体流量与配比、压力转换等) 控制工艺参数的准确程度低,参数稳定性差。因而接头质量常常受人为因素的影响,表现出很大的波动性,断头率增高,使无缝线路存在安全隐患,危及行车安全。
2.2  新型数控气压焊机
青藏铁路无缝线路试验段采用国内新研制的数控气压焊设备,实现了焊接全过程的顺序控制与闭环智能控制。焊接过程中没有人工操作,能够保证焊接工艺的稳定性和一致性,完全了人为因素对接头质量的影响。主要特点:
1) 焊接过程的顺序控制与柔性控制:以PLC 为核心,对焊接作业过程进行顺序控制,将高压时间、低压时间、顶锻保压时间等参数输入控制程序,由程序自动实现焊接时间控制与自动转换。根据实际焊轨工况需要,也可采用人工干预方式进行实时调整。
2) 焊接热输入控制:采用焊接参数闭环控制技术,由加热器摆火控制模块、加热气体流量与配比控制模块联合,实现摆火幅度、频率、气流大小、火焰特性等与焊接温度相关的参数的精确控制。
3) 焊接挤压变形控制: 将钢轨气压焊“三段压力法”工艺固化在PLC 控制程序中,采用压力传感器、位移传感器,以闭环控制方式实现焊接压力实时控制、柔性调节与自动转换以及顶锻位移的闭环控制。
4) 具有焊接参数在线检测、记录、存储功能。

3  高海拔下主要焊接工艺的探讨


3.1  氧气、乙炔流量
气压焊的焊接火焰一般是采用氧—乙炔焰或氧—丙烷焰,实际上大都利用氧—乙炔焰焊接。其火焰的外形和构造以及火焰的温度分布,主要是由燃烧比决定的。
燃烧比:β0 = VkPVa ( Vk 为氧气的体积; Va 为乙炔的体积) 。
在内地低海拔地区(海拔高度≤1 000 m) ,气压焊使用的为弱碳化焰,β0 一般为0185~0195。但在青藏线海拔高度> 3 000 m的地区,没有成熟的经验可借鉴,现场气压焊燃烧比的确定以过去内地的经验保证不了焊接质量。为此,我们在海拔高度4 300 m的玉珠峰车站进行了反复试验,取得了第一手资料,燃烧比β0 应控制在0196~111。
气压焊60 kgPm U71Mn 钢轨15 根通过落锤试验的接头,其焊接时的氧气、乙炔流量记录如表1。

 


3.2  加热器
气压焊加热器各部位火焰的强度,直接影响到焊接质量。断口上出现光斑、未焊透和过烧时,如无其他原因,肯定是相应部位的火焰功率偏低或偏高,需对加热器火孔进行调试。在内地低海拔地区(海拔高度≤1000 m) ,气压焊60 kgPm U71Mn 钢轨使用的加热器火孔图(38 ×2 = 76 孔) 如图1 所示。
图1 60 kgPm 钢轨加热器火孔火焰强度无法满足高原条件下气压焊焊接技术要求。同样,我们在海拔高度4 300 m的玉珠峰车站进行了反复试验、调试,总结了一套适用于高海拔地区的火孔配置图如图2。其火孔数量为39 ×2 = 78 孔



http://www.absygs.com 公司后提示信息

产品推荐